亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? lungbayesdemo.html

?? 關于醫學診斷系統matlab實現 v 關于醫學診斷系統matlab實現
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
P(B|X=t) = 0.18585P(L|X=t) = 0.67227P(X|X=t) = 1</pre><p>Given the observed abnormal x-ray results, the probability of lung cancer has increased significantly because of the direct            dependency of node <tt>X</tt> (x-rays) on node <tt>L</tt> (lung cancer).         </p>         <p>Finally, suppose the patient has both been diagnosed with bronchitis and received positive results for his/her chest x-ray.            We update the previous state of the network (<tt>X</tt> = <tt>t</tt>) with the new evidence(<tt>B</tt> = <tt>t</tt>), as shown below:         </p><pre class="codeinput">evNode = B;evValue = t;[n3, e3, A3, a3] = bnMsgPassUpdate(n2, e2, A2, a2, evNode, evValue);<span class="keyword">for</span> i = 1:n    disp([<span class="string">'P('</span> nodeNames{i}, <span class="string">'|B=t,X=t) = '</span> num2str(n3(i).P(1))]);<span class="keyword">end</span></pre><pre class="codeoutput">P(S|B=t,X=t) = 0.91372P(B|B=t,X=t) = 1P(L|B=t,X=t) = 0.85908P(X|B=t,X=t) = 1</pre><p>We can compare the three situations by plotting the probabilities as bar charts. Evidence of bronchitis and evidence of abnormal            x-rays increase the probability of lung cancer and smoking history, one indirectly and the other directly.         </p><pre class="codeinput">figure(); subplot(3,1,1);bar(x1,  <span class="string">'stacked'</span>); set(gca, <span class="string">'xticklabel'</span>, nodeNames);ylabel(<span class="string">'Probability'</span>); title(<span class="string">'Bronchitis diagnosis'</span>);legend({<span class="string">'true'</span>, <span class="string">'false'</span>}, <span class="string">'location'</span>, <span class="string">'SouthEastOutside'</span>)hold <span class="string">on</span>; subplot(3,1,2);x2 = cat(1,n2.P);bar(x2,<span class="string">'stacked'</span>); set(gca, <span class="string">'xticklabel'</span>, nodeNames);ylabel(<span class="string">'Probability'</span>); title(<span class="string">'Abnormal x-rays'</span>);legend({<span class="string">'true'</span>, <span class="string">'false'</span>}, <span class="string">'location'</span>, <span class="string">'SouthEastOutside'</span>)hold <span class="string">on</span>; subplot(3,1,3);x3 = cat(1,n3.P);bar(x3, <span class="string">'stacked'</span>); set(gca, <span class="string">'xticklabel'</span>, nodeNames);ylabel(<span class="string">'Probability'</span>); title(<span class="string">'Bronchitis and abnormal x-ray'</span>);legend({<span class="string">'true'</span>, <span class="string">'false'</span>}, <span class="string">'location'</span>, <span class="string">'SouthEastOutside'</span>)</pre><img vspace="5" hspace="5" src="lungbayesdemo_05.png"> <p>We can now compare the effect of a positive versus negative bronchitis diagnosis in presence of abnormal x-ray results. We            instantiate <tt>B = f</tt> (false) and compare with previous estimates <tt>B = t</tt> (true).         </p><pre class="codeinput">evNode = B;evValue = f;[n4, e4, A4, a4] = bnMsgPassUpdate(n2, e2, [], [], evNode, evValue);<span class="keyword">for</span> i = 1:n    disp([<span class="string">'P('</span> nodeNames{i}, <span class="string">'|B=f,X=t) = '</span> num2str(n4(i).P(1))]);<span class="keyword">end</span>figure();bar3([n3(S).P(:,t) n4(S).P(:,t); n3(L).P(:,t) n4(L).P(:,t)]);colormap(summer); zlabel(<span class="string">'Probability'</span>);set(gca,<span class="string">'xticklabel'</span>,{<span class="string">'Smoking'</span>,<span class="string">'Lung Cancer'</span>},<span class="string">'yticklabel'</span>, {<span class="string">'With Bronchitis'</span>, <span class="string">'Without Bronchitis'</span>});set(gca,<span class="string">'xticklabel'</span>,{<span class="string">'With Bronchitis'</span>,<span class="string">'Without Bronchitis'</span>},<span class="string">'yticklabel'</span>, {<span class="string">'Smoking'</span>,<span class="string">'Lung Cancer'</span>});title(<span class="string">'Conditional probabilities with evidence of abnormal x-ray results'</span>)view(50,35);</pre><pre class="codeoutput">P(S|B=f,X=t) = 0.62575P(B|B=f,X=t) = 0P(L|B=f,X=t) = 0.62962P(X|B=f,X=t) = 1</pre><img vspace="5" hspace="5" src="lungbayesdemo_06.png"> <p>When bronchitis is ruled out (<tt>B = f</tt>), the probability of smoking history decreases with respect to the case in which the bronchitis is confirmed (<tt>B = t</tt>). The effect is propagated across the network and affects the probability of lung cancer in a similar manner.         </p>         <h2>Expanding the Network<a name="16"></a></h2>         <p>Among various symptoms related to lung cancer and bronchitis is shortness of breath (dyspnea). We want to model the relationship            of this condition within the considered Bayesian Network. We introduce a node <tt>D</tt> and modify the adjacency matrix accordingly.         </p><pre class="codeinput"><span class="comment">%=== add node D to the network</span>D = 5;CPT{D}(:,:,t) = [.75 .1; .5 .05];CPT{D}(:,:,f) = 1 - CPT{D}(:,:,t);values{D} =  [1 2];adj(end+1,:) = [0 0 0 0];adj(:,end+1) = [0 1 1 0 0];<span class="comment">%=== draw the updated network</span>nodeLabels = {<span class="string">'Smoking'</span>, <span class="string">'Bronchitis'</span>, <span class="string">'Lung Cancer'</span>, <span class="string">'Xrays'</span>, <span class="string">'Dyspnea'</span>};nodeSymbols = {<span class="string">'S'</span>, <span class="string">'B'</span>, <span class="string">'L'</span>, <span class="string">'X'</span>, <span class="string">'D'</span>};bg = biograph(adj, nodeLabels, <span class="string">'arrowsize'</span>, 4);nodeHandles= bg.Nodes;set(nodeHandles, <span class="string">'shape'</span>, <span class="string">'ellipse'</span>);view(bg)</pre><img vspace="5" hspace="5" src="lungbayesdemo_07.png"> <p>With the introduction of node <tt>D</tt>, the network is not singly-connected anymore. In fact, there are more than one chain between any two nodes (i.e., <tt>S</tt> and <tt>D</tt>). We can check this property by considering the undirected graph associated with the network and veryfying that it is not            acyclic.         </p><pre class="codeinput">isAcyclic = graphisdag(sparse(adj | adj'))</pre><pre class="codeoutput">isAcyclic =     0</pre><p>In order to use the algorithm for exact inference described above, we must transform the new, multiply-connected network into            a singly-connected network. Several approaches can be used, including clustering of parent nodes (in our case <tt>B</tt> and <tt>L</tt>) into a single node as follows.         </p>         <p>First, we combine the adjacency matrix entries corresponding to the nodes <tt>B</tt> and <tt>L</tt> into one entry associated to node <tt>BL</tt>. The node <tt>BL</tt> can take up to four values, corresponding to all possible combinations of values of the original nodes <tt>B</tt> and <tt>L</tt>. Then, we update the conditional probability distribution considering that <tt>B</tt> and <tt>L</tt> are conditionally independent given the node <tt>S</tt>, that is P(BL|S) = P(B,L|S) = P(B|S) * P(L|S).         </p><pre class="codeinput"><span class="comment">%=== combine B and L</span>adj(B,:) = adj(B,:) | adj(L,:);adj(:,B) = adj(:,B) | adj(:,L);adj(L,:) = []; adj(:,L) = [];<span class="comment">%=== update the probability distribution accordingly</span>b1 = kron(CPT{B}(1,:), CPT{L}(1,:));b2 = kron(CPT{B}(2,:), CPT{L}(2,:));x = [CPT{X}(1,:) CPT{X}(1,:)];d =  reshape((CPT{D}(:,:,1))', 1, 4);<span class="comment">%=== update the node values</span>S = 1; BL = 2; X = 3; D = 4;nodeNames = {<span class="string">'S'</span>, <span class="string">'BL'</span>, <span class="string">'X'</span>, <span class="string">'D'</span>};tt = 1; tf = 2; ft = 3; ff = 4;values{BL} = 1:4;values(L) = [];<span class="comment">%=== create a clustered Conditional Probability Table</span>cCPT{S} = CPT{S};cCPT{BL}(t,:) = b1; cCPT{BL}(f,:) = b2;cCPT{D}(:,t) = d; cCPT{D}(:,f) = 1 - d;cCPT{X}(:,t) = x; cCPT{X}(:,f) = 1 - x;<span class="comment">%=== create and intiate the net</span>root = find(sum(adj,1)==0); <span class="comment">% root (node with no parent)</span>[cNodes, cEdges] = bnMsgPassCreate(adj, values, cCPT);[cNodes, cEdges] = bnMsgPassInitiate(cNodes, cEdges, root);<span class="keyword">for</span> i = 1:n    disp([<span class="string">'P('</span> nodeNames{i}, <span class="string">'|[]) = '</span> num2str(cNodes(i).P(1))]);<span class="keyword">end</span></pre><pre class="codeoutput">P(S|[]) = 0.2P(BL|[]) = 0.0152P(X|[]) = 0.4128P(D|[]) = 0.08634</pre><h2>Drawing the Expanded Network<a name="19"></a></h2><pre class="codeinput"><span class="comment">%=== draw the network</span>nodeLabels = {<span class="string">'Smoking'</span>, <span class="string">'Bronchitis or Lung Cancer'</span>, <span class="string">'Abnormal X-rays'</span>, <span class="string">'Dyspnea'</span>};cbg = biograph(adj, nodeNames, <span class="string">'arrowsize'</span>, 4);set(cbg.Nodes, <span class="string">'shape'</span>, <span class="string">'ellipse'</span>);cbgInViewer = view(cbg);<span class="comment">%=== assign relevant info to each node handle</span>cnodeHandles = cbgInViewer.Nodes;<span class="keyword">for</span> i = 1:n    cnodeHandles(i).UserData.Distribution = [cNodes(i).P];<span class="keyword">end</span><span class="comment">%=== draw customized nodes</span>set(cnodeHandles, <span class="string">'shape'</span>,<span class="string">'circle'</span>)colormap(summer)cbgInViewer.ShowTextInNodes = <span class="string">'none'</span>;cbgInViewer.CustomNodeDrawFcn = @(node) customnodedraw(node);cbgInViewer.Scale = .7cbgInViewer.dolayout</pre><pre class="codeoutput">Biograph object with 4 nodes and 3 edges.</pre><img vspace="5" hspace="5" src="lungbayesdemo_08.png"> <h2>Performing Exact Inference on Clustered Trees<a name="20"></a></h2>         <p>Suppose a patient complains of dyspnea (<tt>D=t</tt>). We would like to evaluate the likelihood that this symptom is related to either lung cancer or bronchitis.         </p><pre class="codeinput">[n5, e5, A5, a5] = bnMsgPassUpdate(cNodes, cEdges, [], [], D, t);</pre><p>Because node <tt>B</tt> and node <tt>L</tt> are clustered into the node <tt>BL</tt>, we have to calculate their individual conditional probabilities by considering the appropriate value combinations. The conditional            probabilities in <tt>BL</tt> correspond to the following <tt>B</tt> and <tt>L</tt> value combinations: <tt>BL = tt</tt> if <tt>B = t</tt> and <tt>L = t</tt>; <tt>BL = tf</tt> if <tt>B = t</tt> and <tt>L = f</tt>; <tt>BL = ft</tt> if <tt>B = f</tt> and <tt>L = t</tt>; <tt>BL = ff</tt> if <tt>B = f</tt> and <tt>L = f</tt>. Therefore P(B|evidence) is equal to the sum of the first two elements of P(BL|evidence), and similarly, P(L|evidence) is            equal to the sum of the first and third elements in P(BL|evidence).         </p><pre class="codeinput">p(1,:) = n5(S).P;p(2,:) = [sum(n5(BL).P([tt,tf])), 1-sum(n5(BL).P([tt,tf]))];     <span class="comment">% P(B|evidence)</span>p(3,:) = [sum(n5(BL).P([tt,ft])), 1-sum(n5(BL).P([tt,ft]))]; <span class="comment">% P(L|evidence)</span>p(4,:) = n5(X).P;p(5,:) = n5(D).P;<span class="keyword">for</span> i = 1:5    disp([<span class="string">'P('</span> nodeSymbols{i}, <span class="string">'|D=t) = '</span> num2str(p(i,1))]);<span class="keyword">end</span></pre><pre class="codeoutput">P(S|D=t) = 0.49224P(B|D=t) = 0.21867P(L|D=t) = 0.41464P(X|D=t) = 0.48293P(D|D=t) = 1</pre><p>When dyspnea is present, both the likelihood of bronchitis and lung cancer increase. This makes sense, since both illnesses            have dyspnea as symptom and the patient is  indeed exhibiting this symptom.         </p>         <h2>Explaining Away the Lung Cancer<a name="23"></a></h2>         <p>As we can see in the graph, the dyspnea symptom has dependency both on bronchitis and lung cancer. Consider the effect of            a bronchitis diagnosis on the likelihood of lung cancer.         </p><pre class="codeinput"><span class="comment">%=== adjust the CPT to reflect B = 1 before clustering into BL node</span>B = 2; L = 3;CPT{B}(:,1) = [1 1] ; CPT{B}(:,2) = 1 - CPT{B}(:,1);b1 = kron(CPT{B}(1,:), CPT{L}(1,:));b2 = kron(CPT{B}(2,:), CPT{L}(2,:));<span class="comment">%=== create a clustered Conditional Probability Table</span>BL = 2;cCPT{BL}(1,:) = b1; cCPT{BL}(2,:) = b2;<span class="comment">%=== create and intiate the net</span>root = find(sum(adj,1)==0); <span class="comment">% root (node with no parent)</span>[cNodes, cEdges] = bnMsgPassCreate(adj, values, cCPT);[cNodes, cEdges] = bnMsgPassInitiate(cNodes, cEdges, root);<span class="comment">%=== instantiate for F = 1</span>[n7, e7, A7, a7] = bnMsgPassUpdate(cNodes, cEdges, [], [], D, t);w(1,:) = n7(S).P;w(2,:) = [sum(n7(BL).P([tt,tf])), 1-sum(n7(BL).P([tt,tf]))];     <span class="comment">% P(B|evidence)</span>w(3,:) = [sum(n7(BL).P([tt,ft])), 1-sum(n7(BL).P([tt,ft]))]; <span class="comment">% P(L|evidence)</span>w(4,:) = n7(X).P;w(5,:) = n7(D).P;<span class="keyword">for</span> i = 1:5    disp([<span class="string">'P('</span> nodeSymbols{i}, <span class="string">'|B=t,D=t) = '</span> num2str(w(i,1))]);<span class="keyword">end</span></pre><pre class="codeoutput">P(S|B=t,D=t) = 0.41667P(B|B=t,D=t) = 1P(L|B=t,D=t) = 0.33898P(X|B=t,D=t) = 0.4678P(D|B=t,D=t) = 1</pre><p>When a patient complains of dyspnea and is diagnosed with bronchitis, the conditional probability of lung cancer is lower.</p>         <p>Consider now the effect of a lung cancer diagnosis on the likellihood of bronchitis.</p><pre class="codeinput"><span class="comment">%=== adjust the CPT to reflect L = 1 before clustering into BL node</span>B = 2; L = 3;CPT{B}(:,t) = [.25 .05] ; CPT{B}(:,f) = 1 - CPT{B}(:,t);CPT{L}(:,t) = [1 1]; CPT{L}(:,f) = 1 - CPT{L}(:,t);b1 = kron(CPT{B}(t,:), CPT{L}(t,:));b2 = kron(CPT{B}(f,:), CPT{L}(f,:));BL = 2;cCPT{BL}(t,:) = b1; cCPT{BL}(f,:) = b2;<span class="comment">%=== create and intiate the net</span>root = find(sum(adj,1)==0); <span class="comment">% root (node with no parent)</span>[cNodes, cEdges] = bnMsgPassCreate(adj, values, cCPT);[cNodes, cEdges] = bnMsgPassInitiate(cNodes, cEdges, root);<span class="comment">%=== instantiate for D = 1</span>[n8, e8, A8, a8] = bnMsgPassUpdate(cNodes, cEdges, [], [], D, t);v(1,:) = n8(S).P;v(2,:) = [sum(n8(BL).P([tt,tf])), 1-sum(n8(BL).P([tt,tf]))];     <span class="comment">% P(B|evidence)</span>v(3,:) = [sum(n8(BL).P([tt,ft])), 1-sum(n8(BL).P([tt,ft]))]; <span class="comment">% P(L|evidence)</span>v(4,:) = n8(X).P;v(5,:) = n8(D).P;<span class="keyword">for</span> i = 1:5    disp([<span class="string">'P('</span> nodeSymbols{i}, <span class="string">'|L=t,D=t) = '</span> num2str(v(i,1))]);<span class="keyword">end</span></pre><pre class="codeoutput">P(S|L=t,D=t) = 0.21531P(B|L=t,D=t) = 0.12919P(L|L=t,D=t) = 1P(X|L=t,D=t) = 0.6P(D|L=t,D=t) = 1</pre><p>If a patient is diagnosed with lung cancer in presence of dyspnea, the likelihood of bronchitis decreases significantly. This            phenomenon is called "explaining away" and refers to the situations in which the chances of one cause decrease significantly            when the chances of the competing cause increase.         </p>         <p>We can observe the "explaining away" phenomenon in the two situations described above by comparing the conditional probabilities            of node <tt>L</tt> and <tt>B</tt> in the two cases. When the evidence for <tt>B</tt> is high, the likelihood of <tt>L</tt> is relatively low, and viceversa, when the evidence for <tt>L</tt> is high, the likelihood of <tt>B</tt> is low.         </p><pre class="codeinput">y = [w(2:3,1)  v(2:3,1)];figure();bar(y);set(gca, <span class="string">'xticklabel'</span>, {<span class="string">'Bronchitis'</span>, <span class="string">'Lung Cancer'</span>});ylabel(<span class="string">'Probability'</span>); title(<span class="string">'Explaining away with evidence of dyspnea'</span>)legend(<span class="string">'B = t'</span>, <span class="string">'L = t'</span>, <span class="string">'location'</span>, <span class="string">'SouthEastOutside'</span>);colormap(summer)

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
蜜桃传媒麻豆第一区在线观看| 国模一区二区三区白浆| 欧美电影免费观看高清完整版在 | 波多野结衣一区二区三区 | 中文字幕在线播放不卡一区| 5858s免费视频成人| 99久久精品国产一区| 日本sm残虐另类| 日韩伦理av电影| 久久久99精品久久| 日韩欧美国产麻豆| 欧美视频在线一区| 99精品一区二区三区| 精品亚洲欧美一区| 五月激情综合色| 亚洲欧美色综合| 国产精品美女久久久久久久久久久| 欧美精品日韩综合在线| 91免费观看国产| 丰满放荡岳乱妇91ww| 精品一区二区精品| 日韩电影免费在线看| 亚洲精品国产第一综合99久久| 久久精品一区蜜桃臀影院| 日韩一级完整毛片| 91精品视频网| 欧美丰满一区二区免费视频| 日本韩国精品在线| 99视频精品在线| 成人午夜免费av| 粉嫩欧美一区二区三区高清影视| 国产在线精品一区二区夜色| 开心九九激情九九欧美日韩精美视频电影 | 一本久久a久久免费精品不卡| 国产成都精品91一区二区三| 国产一区二区三区日韩| 久久精品理论片| 奇米影视一区二区三区小说| 午夜精品免费在线观看| 一区二区三区毛片| 亚洲国产精品久久久男人的天堂| 亚洲欧美日韩小说| 夜夜精品视频一区二区| 悠悠色在线精品| 亚洲黄色小说网站| 一级女性全黄久久生活片免费| 亚洲精品成人悠悠色影视| 亚洲精品福利视频网站| 一区二区三区四区在线免费观看 | 精品国产精品网麻豆系列| 日韩欧美的一区| 亚洲精品一区二区三区精华液 | 久久久99免费| 中文字幕在线视频一区| 亚洲欧洲韩国日本视频| 亚洲免费在线视频| 丝袜美腿亚洲综合| 久久国产欧美日韩精品| 国产精品自拍三区| av爱爱亚洲一区| 91福利国产成人精品照片| 欧美日韩国产片| 欧美大片免费久久精品三p | 日本va欧美va欧美va精品| 六月丁香综合在线视频| 国产另类ts人妖一区二区| 懂色av中文一区二区三区| 99re热视频精品| 欧美日韩国产123区| 日韩视频在线观看一区二区| 久久精品在这里| 亚洲青青青在线视频| 性做久久久久久| 国产一区视频导航| 99国产精品国产精品毛片| 欧洲精品在线观看| 欧美成人高清电影在线| 国产精品二三区| 免费不卡在线观看| 国产精品伊人色| 欧美在线看片a免费观看| 欧美tickle裸体挠脚心vk| 国产精品国产三级国产普通话三级 | 国产99久久久国产精品| 欧洲亚洲国产日韩| 精品久久国产97色综合| 亚洲视频精选在线| 久久超碰97人人做人人爱| 日本精品视频一区二区| 26uuu精品一区二区在线观看| 中文字幕一区二区三区在线播放| 亚洲3atv精品一区二区三区| 国产福利一区二区三区视频在线 | 欧美电影免费观看高清完整版| 中文av字幕一区| 捆绑调教美女网站视频一区| 91高清视频免费看| 国产欧美日韩另类视频免费观看| 亚洲成人在线观看视频| 国产91露脸合集magnet| 51精品久久久久久久蜜臀| 亚洲少妇最新在线视频| 国产真实乱对白精彩久久| 欧美日韩一区二区三区在线看 | 中文天堂在线一区| 奇米精品一区二区三区在线观看| 91在线丨porny丨国产| 久久久一区二区三区捆绑**| 亚洲成精国产精品女| 91在线视频免费91| 欧美国产精品一区二区| 黄色日韩网站视频| 91精品国产色综合久久ai换脸| 最新高清无码专区| 福利电影一区二区| 精品国产成人系列| 秋霞成人午夜伦在线观看| 欧美做爰猛烈大尺度电影无法无天| 国产日韩欧美精品电影三级在线| 美女国产一区二区| 欧美人狂配大交3d怪物一区| 一区二区三区中文字幕| 成人av小说网| 国产精品麻豆一区二区| 国产一区三区三区| 精品日韩99亚洲| 久久国产精品99久久久久久老狼 | 午夜欧美在线一二页| 一本到一区二区三区| 成人欧美一区二区三区小说 | 麻豆一区二区99久久久久| 欧美三电影在线| 亚洲国产一区二区a毛片| 99久久99久久精品免费观看| 中文一区在线播放| 成人网在线播放| 亚洲图片激情小说| 91麻豆123| 亚洲另类春色国产| 欧美少妇xxx| 亚洲成人一区二区在线观看| 欧美日韩一级视频| 丝袜美腿亚洲色图| 日韩欧美亚洲一区二区| 老司机免费视频一区二区| 精品久久久久一区二区国产| 韩国三级在线一区| 国产视频一区不卡| 成人午夜视频网站| 亚洲免费毛片网站| 欧美精品乱人伦久久久久久| 日韩精品亚洲专区| 日韩一二在线观看| 国产麻豆9l精品三级站| 国产精品久久久久久久岛一牛影视| 波多野结衣中文字幕一区二区三区 | 亚洲三级在线观看| 色偷偷久久人人79超碰人人澡| 亚洲资源中文字幕| 欧美喷潮久久久xxxxx| 久久国产乱子精品免费女| 久久久久久久电影| 色8久久精品久久久久久蜜| 天堂久久久久va久久久久| 欧美电影免费观看高清完整版 | 日本vs亚洲vs韩国一区三区二区| 欧美一级欧美三级在线观看| 黄页视频在线91| 国产精品九色蝌蚪自拍| 欧美日韩国产一区二区三区地区| 久久激情综合网| 一区免费观看视频| 欧美高清一级片在线| 欧美日韩三级一区| 精品亚洲欧美一区| 最新不卡av在线| 日韩精品中文字幕一区二区三区| 国产69精品一区二区亚洲孕妇| 亚洲男女一区二区三区| 欧美大片在线观看| 一本到不卡免费一区二区| 日av在线不卡| 国产精品嫩草久久久久| 欧美放荡的少妇| 波多野结衣视频一区| 美女爽到高潮91| 亚洲老司机在线| 久久久久亚洲综合| 欧美中文字幕一区二区三区 | 久久精品日韩一区二区三区| 在线免费观看成人短视频| 精品一区二区久久| 一区二区三区日韩欧美精品| xnxx国产精品| 欧美精品久久久久久久久老牛影院 | 亚洲激情五月婷婷| 精品成人一区二区| 欧美色欧美亚洲另类二区| 国产成人午夜99999| 亚洲国产精品自拍|