亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? mappings.m%

?? 模式識別工具箱,本人畢業(yè)論文時(shí)用到的,希望對大家有用!
?? M%
字號:
%MAPPINGS Info on the mapping class construction of PRTools% % This is not a command, just an information file% % In the Pattern Recognition Toolbox PRTools there are many commands to train % and use mappings between spaces of different (or equal) dimensionalities. For % example:% %    if    A  is a m x k dataset (m objects in a k-dimensional space)%    and   W  is a k x n mapping (map from k to n dimensions)%    then A*W is a m x n dataset (m objects in a n-dimensional space)% % Mappings can be linear (e.g. a rotation) as well as nonlinear (e.g. a neural % network). Typically they can be used for classifiers. In that case a k x n % mapping maps a k-feature data vector on the output space of an n-class % classifier (exception: 2-class classifiers like discriminant functions may be % implemented by a mapping to a 1-dimensional space like the distance to the % discriminant, n = 1).% % Mappings are of the datatype 'mapping' (class(W) is 'mapping'), have a size % of [k,n] if they map from k to n dimensions. Mappings can be instructed to % assign labels to the output columns, e.g. the class names. These labels can % be retrieved by% %    labels = getlab(W); before the mapping, or%    labels = getlab(A*W); after the dataset A is mapped by W.% % Mappings can be learned from examples, (labeled) objects stored in a dataset % A (see datasets), for instance by training a classifier:% %    W3 = ldc(A);       the normal densities based linear classifier%    W2 = knnc(A,3);    the 3-nearest neighbor rule%    W1 = svc(A,'p',2); the support vector classifier based on  a 2-nd order%                       polynomial kernel% % Untrained or empty mappings are sometimes very useful. Here the dataset is % replaced by an empty set or entirely skipped: %    V1 = ldc; V2 = knnc([],a); V3 = svc([],'p'2);% Such mappings can be trained later by%    W1 = A*V1; W2 = A*V2; W3 = A*V3;% The mapping of a testset B by B*W1 is now equivalent to B*(A*V1) or even, % irregulary but very handy to A*V1*B (or even A*ldc*B). Note that expressions % are evaluated from left to right, so B*A*V1 may result  in an error as the % multiplication of the two datasets (B*A) is executed first.% % Users can add new mappings or classifiers by a single routine that should% support the following type of calls:%% W = newmapm([], par1, par2, ...); Defines the untrained, empty mapping.% W = newmapm(A, par1, par2, ...); Defines the map trained by dataset A.% B = newmapm(A, W); Defines the mapping of  A on W, resulting in B.%% For an example list the routine subsc.m.%% Some trainable mappings do not depend on class labels and can be interpreted % as finding a space that approximates as good as possible the original dataset % given some conditions and measures. Examples are the Karhunen-Loeve Mapping % (klm) which may be used for PCA and the Support Vector Mapping (svm) by which % nonlinear, kernel PCA mappings can be computed% % In addition to trainable mappings, there are fixed mappings, which operation % is not computed from a trainingset but defined by at most a few parameters. % Most of them can be set by cmapm. Other ones are sigm and invsigm.% % The result D of a mapping of a testset on a trained classifier, %%    D = B*W1%% is again a dataset, storing for each object in B the output values of the % classifier. These values, usually between -inf and inf  can be interpreted as % similarities: the larger, the more similar with the corresponding class. These % number can be mapped on the [0,1] interval by sigm:%%    D = B*W1*sigm%% The values in a single row (object) don't necessarily sum to one. This can be % achieved by the fixed mapping normm:%%    D = B*W1*sigm*normm%% which is equivalent to B*W1*classc. Effectively a mapping W is converted into % a classifier by W*classc, which maps objects on the normalized [0,1] output % space. Usually a mapping that can be converted into a classifier in this way, is% scaled such by a multiplicative constant that these numbers optimally represent% (in the maximum likelihood sense) the posterior probabilities for the training% data. The resulting output dataset D has column labels for the classes and row% labels for the objects. The class labels of the maximum values for each object% can be retrieved by%%    labels = D*classd; or labels = classd(D);%% A global classification error follows from%%    e = D*testd; or e = testd(D);%% Mappings can be combined in the following ways:% % sequential: W = W1 * W2 * W3 (equal inner dimensions)% stacked   : W = [W1, W2, W3] (equal numbers of 'rows' (input dimensions))% parallel  : W = [W1; W2 ;W3] (unrestricted)% % The output size of the parallel mapping is irregulary equal to (k1+k2+k3) x % (n1+n2+n3) as the output combining of columns is undefined. In a stacked or % parallel mapping columns with the same label can be combined by various % combiners like maxc, meanc and prodc. If the classifiers W1, W2 and W3 are % trained for the same n classes, their output labels are the same and may be% combined by W = prodc([W1;W2;W3]) into a (k1+k2+k3) x n classifier.% % W for itself, or display(W) lists the size and type of a classifier as well % as the routine or section in @mapping/mtimes used for computing a mapping A*W.% The construction of a combined mapping may be inspected by parsc(W). % % A mapping may be given an outputselection by W = W(:,J), in which J is a set % of indices pointing to the desired classes.%%    B = A*W(:,J); is equivalent to B = A*W; B = B(:,J);%% Input selection is not possible for a mapping.% % A classifier may be given a reject option by rejectc.%% User defined mappings% ---------------------%% Users may define their own mapping (e.g. mapexm) using the mapping constructor.% In this constructor call the first parameter should be the name of the routine% that handles the mapping of an incoming dataset. If the mapping is trained% by W = mapexm(A,pars) and W is set in mapexm by W = mapping('mapexm', ...), % then PRTools calls mapexm(A,W) for the evaluation of A*W. An untrained mapping% should be defined inside mapexm by W = mapping('mapexm',{pars}), to be called% by W = A*mapexm([],pars). See subsc.m for an example.%% Fixed mappings are defined as W = mapping('mapexm','fixed',{parameters}).% The parameters are the ones needed for calling mapexm, so A*W is evaluated% as mapexm(A,p1,p2,...) if {parameters} = {p1,p2}. Fixed mappings are not called% for training and have usually an undetermined size. Size checking is thereby not% done. An example is cmapm.%% Combiner mappings are defined as W = mapping('mapexm','combiner',{parameters}).% They can be functions of other mappings. An example is is classc. The call% V = ldc(A)*classc is thereby evaluated as V = classc(ldc(A)), resulting% in a new mapping V. Typically this will be a trained mapping or a fixed mapping.%% A trained mapping is computed for a training set, e.g. W = ldc(A). It thereby% differs from a fixed mapping. Consequently it has determined sizes for the% dimensions of the input and the output space. The first is typically the% feature size of A. For classifiers the dimension of the output space is% typically the number of classes. Two-class classifiers may return an output% space of just one dimension, i.e. the distance to the separation function.%% An untrained mapping just stores the mapping or classifier to be used for% later training, e.g. W = klm([],0.95). Now A*W is evaluated as klm(A,0.95).% Untrained mappings may also be combined, both sequentially as well as% stacked. An example is W = klm([],0.95) * fisherc. The training command% A*W is now evaluated as klm(A,0.95)*fisherc(A*klm(A,0.95)). Another example% is W = [nmc fisherc qdc]*maxc. B*(A*W) is now evaluated as % maxc([B*nmc(A) B*fisherc(A) B*qdc(A)]).%% Differences between the four types of mappings can now be summarized as:%% A*W     -  fixed     : results in a dataset, no size checking%         -  combiner  : treated as fixed%         -  untrained : results in a mapping%         -  trained   : results in a dataset, size checking%% A*(V*W) - % evaluated as V = A*ldc (training), followed by W = classc(V).

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品色哟哟网站| 精品国产一二三区| 中文字幕精品一区二区精品绿巨人 | 岛国精品在线观看| 色综合天天综合网天天看片| 欧美电视剧在线观看完整版| 亚洲精品高清在线| 成人精品鲁一区一区二区| 日韩丝袜情趣美女图片| 亚洲最大的成人av| 不卡的av在线播放| 久久亚洲精精品中文字幕早川悠里| 亚洲二区在线视频| 色综合欧美在线视频区| 亚洲国产精品精华液2区45| 美国一区二区三区在线播放| 在线观看亚洲精品视频| 中文字幕色av一区二区三区| 国产在线精品不卡| 精品国产网站在线观看| 日韩电影在线一区二区| 欧美久久一二三四区| 一区二区三区精密机械公司| 99久久久久免费精品国产| 国产亚洲1区2区3区| 久久精品国产精品亚洲红杏| 欧美精品三级在线观看| 午夜久久久影院| 欧美图片一区二区三区| 怡红院av一区二区三区| 91免费看`日韩一区二区| 国产精品污www在线观看| 国产传媒一区在线| 欧美国产一区视频在线观看| 国产精品乡下勾搭老头1| 国产亚洲一区字幕| 国产激情一区二区三区| 久久精品一区四区| 国产 欧美在线| 中文字幕国产一区二区| 成人一区二区视频| 国产精品久久久爽爽爽麻豆色哟哟 | 亚洲区小说区图片区qvod| 91尤物视频在线观看| 亚洲视频在线一区二区| 日本韩国欧美三级| 一区二区三区在线影院| 精品视频在线看| 午夜精彩视频在线观看不卡| 宅男噜噜噜66一区二区66| 全国精品久久少妇| 精品国产一区a| 成人午夜视频在线| 亚洲精品成人悠悠色影视| 欧美优质美女网站| 日韩高清不卡在线| 欧美sm美女调教| 国产不卡视频在线观看| 中文字幕永久在线不卡| 色屁屁一区二区| 午夜精品在线看| 久久综合色天天久久综合图片| 国产成人av在线影院| 亚洲欧洲99久久| 欧美午夜精品一区| 人禽交欧美网站| 中文字幕免费在线观看视频一区| 91伊人久久大香线蕉| 图片区小说区区亚洲影院| 精品粉嫩超白一线天av| 成人涩涩免费视频| 亚洲精品国产一区二区精华液 | 久久综合久久99| www.一区二区| 亚洲www啪成人一区二区麻豆| 日韩一区二区三区视频| 粉嫩aⅴ一区二区三区四区五区| 国产精品嫩草影院av蜜臀| 欧美性大战久久| 久久不见久久见免费视频1| 国产欧美一区二区精品婷婷| 日本精品一区二区三区四区的功能| 亚洲va欧美va国产va天堂影院| 久久亚洲捆绑美女| 欧洲精品视频在线观看| 激情久久五月天| 亚洲美女视频一区| 精品国产凹凸成av人导航| 99re亚洲国产精品| 久久精品国产999大香线蕉| 国产精品久久久久久久久久免费看 | 国模一区二区三区白浆| 亚洲少妇屁股交4| 日韩一级片网址| 色又黄又爽网站www久久| 免费成人在线影院| 亚洲天堂精品在线观看| 日韩区在线观看| 色噜噜夜夜夜综合网| 九九国产精品视频| 樱花影视一区二区| 国产视频不卡一区| 在线综合+亚洲+欧美中文字幕| av在线播放成人| 久久成人综合网| 一区二区三区精密机械公司| 国产亚洲短视频| 欧美精品九九99久久| www.欧美色图| 韩国三级中文字幕hd久久精品| 亚洲综合丁香婷婷六月香| 国产欧美精品国产国产专区| 69堂成人精品免费视频| 91免费版在线看| 福利电影一区二区三区| 麻豆精品国产91久久久久久| 一区二区三区资源| 国产午夜精品在线观看| 日韩视频免费直播| 欧美在线看片a免费观看| 成人免费黄色大片| 国内精品嫩模私拍在线| 日韩av不卡一区二区| 亚洲综合一区二区三区| 自拍偷拍国产精品| 国产欧美精品区一区二区三区| 日韩欧美成人激情| 制服丝袜亚洲精品中文字幕| 欧美亚洲综合另类| 91丨九色丨黑人外教| 国产成人免费xxxxxxxx| 国产毛片精品国产一区二区三区| 日韩高清不卡一区二区| 亚洲va欧美va人人爽| 一区二区三区在线视频免费| 亚洲欧洲美洲综合色网| 国产精品毛片高清在线完整版| 久久久三级国产网站| 精品国产麻豆免费人成网站| 日韩一区二区三区视频| 欧美精品三级在线观看| 欧美剧情片在线观看| 欧美美女bb生活片| 欧美日韩www| 欧美日韩一级黄| 欧美日韩一区视频| 欧美午夜精品免费| 欧美日韩夫妻久久| 欧美日本一区二区在线观看| 在线观看中文字幕不卡| 欧美亚洲一区二区在线| 91精彩视频在线| 91久久线看在观草草青青| 色婷婷av久久久久久久| 欧美午夜精品一区二区三区| 欧美唯美清纯偷拍| 欧美日免费三级在线| 欧美日韩午夜影院| 欧美精品亚洲一区二区在线播放| 91麻豆精品国产91久久久久久 | 国产精品精品国产色婷婷| 国产精品欧美一级免费| 国产精品美女视频| 成人欧美一区二区三区小说| 亚洲精品成人a在线观看| 亚洲综合一二三区| 视频一区在线播放| 青青草国产成人av片免费| 久久99精品久久久久久动态图| 国产一区二区三区香蕉| 国产盗摄女厕一区二区三区| 波波电影院一区二区三区| 日本韩国精品在线| 欧美精品1区2区3区| 日韩一区二区三区精品视频| 欧美不卡视频一区| 国产欧美日韩综合精品一区二区| 中文字幕亚洲不卡| 亚洲成在人线免费| 久久99久久精品| 不卡一区中文字幕| 欧美午夜精品久久久久久超碰| 欧美一区二区三区在线| 久久综合九色综合欧美就去吻| 日本一区二区三区视频视频| 亚洲欧美一区二区三区极速播放| 亚洲综合另类小说| 麻豆一区二区三| 波多野结衣亚洲| 欧美三区在线视频| 日韩久久免费av| 国产精品久久久久永久免费观看 | 国产精品一区三区| 91在线视频网址| 欧美日韩在线播| 337p粉嫩大胆色噜噜噜噜亚洲| 中文字幕一区二区在线播放| 亚洲午夜羞羞片| 国产在线观看一区二区| 日本国产一区二区|