?? som_vis_coords.m
字號(hào):
function unit_coord=som_vis_coords(lattice, msize)%SOM_VIS_COORDS Unit coordinates used in visualizations.% % Co = som_vis_coords(lattice, msize)%% Co = som_vis_coords('hexa',[10 7])% Co = som_vis_coords('rectU',[10 7])%% Input and output arguments: % lattice (string) 'hexa', 'rect', 'hexaU' or 'rectU'% msize (vector) grid size in a 1x2 vector %% Co (matrix) Mx2 matrix of unit coordinates, where % M=prod(msize) for 'hexa' and 'rect', and % M=(2*msize(1)-1)*(2*msize(2)-1) for 'hexaU' and 'rectU'%% This function calculates the coordinates of map units on a 'sheet'% shaped map with either 'hexa' or 'rect' lattice as used in the% visualizations. Note that this slightly different from the% coordinates provided by SOM_UNIT_COORDS function. %% 'rectU' and 'hexaU' gives the coordinates of both units and the% connections for u-matrix visualizations.%% For more help, try 'type som_vis_coords' or check out online documentation.% See also SOM_UNIT_COORDS, SOM_UMAT, SOM_CPLANE, SOM_GRID.%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PURPOSE % % Returns coordinates of the map units for map visualization%% SYNTAX%% Co = som_vis_coords(lattice, msize)%% DESCRIPTION%% This function calculates the coordinates of map units in 'hexa' and% 'rect' lattices in 'sheet' shaped map for visualization purposes. It% differs from SOM_UNIT_COORDS in the sense that hexagonal lattice is% calculated in a "wrong" way in order to get integer coordinates for% the units. Another difference is that it may be used to calculate% the coordinates of units _and_ the center points of the lines% connecting them (edges) by using 'hexaU' or 'rectU' for lattice. % This property may be used for drawing u-matrices.%% The unit number 1 is set to (ij) coordinates (1,1)+shift% 2 (2,1)+shift%% ... columnwise% % n-1th (n1-1,n2)+shift% nth (n1,n2)+shift%% where grid size = [n1 n2] and shift is zero, except for % the even lines of 'hexa' lattice, for which it is +0.5.%% For 'rectU' and 'hexaU' the unit coordinates are the same and the% coordinates for connections are set according to these. In this case% the ordering of the coordinates is the following:% let% U = som_umat(sMap); U=U(:); % make U a column vector% Uc = som_vis_coords(sMap.topol.lattice, sMap.topol.msize); % now the kth row of matrix Uc, i.e. Uc(k,:), contains the coordinates % for value U(k). %% REQUIRED INPUT ARGUMENTS %% lattice (string) The local topology of the units: % 'hexa', 'rect', 'hexaU' or 'rectU'% msize (vector) size 1x2, defining the map grid size. % Notice that only 2-dimensional grids% are allowed.%% OUTPUT ARGUMENTS% % Co (matrix) size Mx2, giving the coordinates for each unit.% M=prod(msize) for 'hexa' and 'rect', and % M=(2*msize(1)-1)*(2*msize(2)-1) for 'hexaU' and 'rectU'%% FEATURES% % Only 'sheet' shaped maps are considered. If coordinates for 'toroid'% or 'cyl' topologies are required, you must use SOM_UNIT_COORDS% instead.%% EXAMPLES%% Though this is mainly a subroutine for visualizations it may be% used, e.g., in the following manner:%% % This makes a hexagonal lattice, where the units are rectangular% % instead of hexagons.% som_cplane('rect',som_vis_coords('hexa',[10 7]),'none');%% % Let's make a map and calculate a u-matrix: % sM=som_make(data,'msize',[10 7],'lattice','hexa');% u=som_umat(sM); u=u(:);% % Now, these produce equivalent results:% som_cplane('hexaU',[10 7],u);% som_cplane(vis_patch('hexa')/2,som_vis_coords('hexaU',[10 7]),u);%% SEE ALSO%% som_grid Visualization of a SOM grid% som_cplane Visualize a 2D component plane, u-matrix or color plane% som_barplane Visualize the map prototype vectors as bar diagrams% som_plotplane Visualize the map prototype vectors as line graphs% som_pieplane Visualize the map prototype vectors as pie charts% som_unit_coords Locations of units on the SOM grid% Copyright (c) 1999-2000 by the SOM toolbox programming team.% http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta Johan 201099 juuso 261199%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if ~vis_valuetype(msize,{'1x2'}), error('msize must be a 1x2 vector.')endif vis_valuetype(lattice,{'string'}) switch lattice case {'hexa', 'rect'} munits=prod(msize); unit_coord(:,1)=reshape(repmat([1:msize(2)],msize(1),1),1,munits)'; unit_coord(:,2)=repmat([1:msize(1)]',msize(2),1); if strcmp(lattice,'hexa') % Move even rows by .5 d=rem(unit_coord(:,2),2) == 0; unit_coord(d,1)=unit_coord(d,1)+.5; end case {'hexaU','rectU'} msize=2*msize-1; munits=prod(msize); unit_coord(:,1)=reshape(repmat([1:msize(2)],msize(1),1),1,munits)'; unit_coord(:,2)=repmat([1:msize(1)]',msize(2),1); if strcmp(lattice,'hexaU') d=rem(unit_coord(:,2),2) == 0; unit_coord(d,1)=unit_coord(d,1)+.5; d=rem(unit_coord(:,2)+1,4) == 0; unit_coord(d,1)=unit_coord(d,1)+1; end unit_coord=unit_coord/2+.5; otherwise error([ 'Unknown lattice ''' lattice '''.']); endelse error('Lattice must be a string.');end
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -