亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? crossvalidate.m

?? 最小二乘支持向量基的工具箱,希望對(duì)大家有用!
?? M
字號(hào):
function [cost,costs,output] = crossvalidate(model, X,Y, L, estfct,combinefct, corrected,trainfct,simfct)% Estimate the model performance of a model with [$ l$] -fold crossvalidation%% >> cost = crossvalidate({Xtrain,Ytrain,type,gam,sig2}, Xval, Yval)% >> cost = crossvalidate( model, Xval, Yval)% % The data is once permutated randomly, then it is divided into L% (by default 10) disjunct sets. In the i-th (i=1,...,l) iteration,% the i-th set is used to estimate the performance ('validation% set') of the model trained on the other l-1 sets ('training% set'). At last, the l (denoted by L) different estimates of the% performance are combined (by default by the 'mean'). The% assumption is made that the input data are distributed% independent and identically over the input space. As additional% output, the costs in the different folds ('costs') and all% residuals ('ec') of the data are returned:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval)% % By default, this function will call the training (trainlssvm) and% simulation (simlssvm) algorithms for LS-SVMs. However, one can% use the validation function more generically by specifying the% appropriate training and simulation function. Some commonly used criteria are:% % >> cost = crossvalidate(model, Xval, Yval, 10, 'misclass', 'mean', 'corrected')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mse', 'mean', 'original')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mae', 'median', 'corrected')% % Full syntax% %     1. Using LS-SVMlab with the functional interface:% % >> [cost, costs, ec] = crossvalidate({X,Y,type,gam,sig2,kernel,preprocess},Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         X             : Training input data used for defining the LS-SVM and the preprocessing%         Y             : Training output data used for defining the LS-SVM and the preprocessing%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         Xval          : N x d matrix with the inputs of the data used for cross-validation%         Yval          : N x m matrix with the outputs of the data used for cross-validation%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     2. Using the object oriented interface:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the LS-SVM model%         Xval          : Nt x d matrix with the inputs of the validation points used in the procedure%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     3. Using other modeling techniques::% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction, trainfct, simfct)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : l x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the model%         Xval          : Nt x d matrix with the inputs of the validation points used%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'%         trainfct      : Function used to train the model%         simfct        : Function used to simulate test data with the model% % See also:% validate, leaveoneout, leaveoneout_lssvm, trainlssvm, simlssvm% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initialisation and defaults%if size(X,1)~=size(Y,1), error('X and Y have different number of datapoints'); end[nb_data,y_dim] = size(Y);% LS-SVMlabeval('model = initlssvm(model{:});',' ');eval('L;','L=min(ceil(model.nb_data/4),10);');eval('estfct;','estfct=''mse'';');eval('combinefct;','combinefct=''mean'';');eval('trainfct;','trainfct=''trainlssvm'';');eval('simfct;','simfct=''simlssvm'';');eval('corrected;','corrected=''original'';');%% make a random permutation of the data%px = zeros(size(X));py = zeros(size(Y));if L==nb_data, p = 1:nb_data; else p = randperm(nb_data); endfor i=1:nb_data,  px(i,:) = X(p(i),:);  py(i,:) = Y(p(i),:);end;block_size = floor(nb_data/L);%%initialize: no incremental  memory allocation%err = zeros(L,1);corr2 = zeros(L,1);costs = zeros(L,1);output = zeros(size(Y));%%% start loop over l validations%for l = 1:L,    % divide in data and validation set, trainings data set is a copy  % of permutated_data, validation set is just a logical index   if l==L,    train = [1:block_size*(l-1)];    validation = block_size*(l-1)+1:nb_data;  else    train = [1:block_size*(l-1) block_size*l+1:nb_data];    validation = block_size*(l-1)+1:block_size*l;  end    % lets invert this...eXtreme cv  %validation = [1:block_size*(l-1) block_size*l+1:nb_data];  %train = block_size*(l-1)+1:block_size*l;  %disp([num2str(l) ': |trainset|' num2str(length(train)) ' & |test| ' num2str(length(validation))]);      %costs(l) = validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);  [costs(l), modell,output(p(validation),:)] = ...      validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);    %  % calculate correction term 2: MSE(f_data, error_wholedata)  % try to reuse the previously calculated model  %  if corrected(1) =='c',    eval('errors = feval(simfct, modell, px) - py;corr2(l) = feval(estfct, errors);',...	 'corr2(l) = validate(model, px(train,:), py(train,:), px, py,estfct, trainfct, simfct);');  endend % end loop over l validations%%% misclassifications%sc = find(costs~=inf & costs~=NaN);ff=zeros(size(costs)); ff(sc)=costs(sc);costs=ff;sc = find(corr2~=inf & corr2~=NaN);ff=zeros(size(corr2)); ff(sc)=corr2(sc);corr2=ff;%% calculate the final costs%if corrected(1)=='c',  % calculate correction term 1: MSE(f_wholedata, error_wholedata)  corr1 = validate(model,X, Y,  X, Y,  estfct, trainfct, simfct);  if corr1==inf | corr2==NaN, corr1=0; end  cost = feval(combinefct, costs)+corr1-feval(combinefct,corr2);else  cost = feval(combinefct, costs);end;	  fprintf('\n');	%file = [num2str(cost) '_costsLSSVM_{' num2str(model.gam(1)) ',' num2str(model.kernel_pars(1)) '}.mat'];%save L1costs costs;

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一本色道久久综合亚洲精品按摩| 韩国精品久久久| 日本欧美一区二区在线观看| 国产乱国产乱300精品| 在线观看免费一区| 国产亚洲一区二区三区四区| 亚洲v中文字幕| 99精品一区二区三区| 精品欧美久久久| 亚洲国产视频一区二区| 北岛玲一区二区三区四区| 欧美xxxxx裸体时装秀| 亚洲国产综合91精品麻豆| av在线一区二区三区| 久久久蜜桃精品| 激情图片小说一区| 欧美大片在线观看一区| 香蕉成人啪国产精品视频综合网| 成人激情免费网站| 欧美激情在线观看视频免费| 韩国女主播一区| 精品免费国产二区三区| 青青草国产成人av片免费| 欧美另类久久久品| 日韩欧美亚洲另类制服综合在线| 亚洲一二三四区| 91成人在线免费观看| 国产精品国产三级国产a| 国产一区二区女| 91精品国产欧美一区二区18| 亚洲天堂中文字幕| 国产成人一级电影| 久久你懂得1024| 韩国一区二区视频| 久久久久久久久久美女| 蜜桃视频第一区免费观看| 日韩欧美在线一区二区三区| 日韩国产欧美在线视频| 欧美精品1区2区3区| 亚洲精品国产无套在线观| 99re8在线精品视频免费播放| 久久爱另类一区二区小说| 1024成人网色www| 乱一区二区av| 久久婷婷色综合| 豆国产96在线|亚洲| 国产精品久久久久久久久动漫| 国产91精品一区二区麻豆网站| 国产日韩欧美综合一区| av一区二区三区四区| 一区二区三区中文字幕在线观看| 欧美性受xxxx| 青青青爽久久午夜综合久久午夜| 欧美一级专区免费大片| 国产福利精品一区二区| 成人欧美一区二区三区黑人麻豆| 欧美在线视频日韩| 麻豆一区二区三| 日本一区二区久久| 欧美中文一区二区三区| 国产综合色在线| 国产精品一区二区不卡| www.色精品| 亚洲一区二区美女| 亚洲v日本v欧美v久久精品| 日韩三级在线观看| 成人在线视频首页| 日日噜噜夜夜狠狠视频欧美人| 精品国精品国产尤物美女| 99re视频这里只有精品| 蜜桃视频一区二区| 一区二区三区在线看| 精品国产乱码久久久久久久久| 99久久国产免费看| 激情综合色丁香一区二区| 亚洲欧美日韩人成在线播放| 日韩精品一区二区三区视频| 91一区二区三区在线播放| 另类欧美日韩国产在线| 一区二区三区四区在线免费观看 | 欧美在线|欧美| 高清在线不卡av| 欧美猛男gaygay网站| 理论片日本一区| 夜夜嗨av一区二区三区| 久久免费精品国产久精品久久久久 | 国产精品久久福利| 日韩欧美国产一区在线观看| 在线精品视频免费播放| 国产成人综合在线播放| 免费av网站大全久久| 亚洲精品国产第一综合99久久| 久久久久久久综合| 欧美本精品男人aⅴ天堂| 欧美日韩午夜在线| 在线一区二区观看| 91免费精品国自产拍在线不卡| 亚洲国产日韩a在线播放| 亚洲视频一二三| 国产精品久久精品日日| 久久精品夜夜夜夜久久| 欧美tickling挠脚心丨vk| 欧美日韩一区二区在线观看 | 中文字幕在线播放不卡一区| 在线区一区二视频| 91麻豆免费看| 亚洲一区二区三区视频在线 | 久久免费精品国产久精品久久久久 | 国产偷国产偷亚洲高清人白洁| 欧美精品一二三| 欧美高清www午色夜在线视频| 在线免费观看日韩欧美| 欧美无乱码久久久免费午夜一区| 日本丰满少妇一区二区三区| 99精品视频一区| 色播五月激情综合网| 不卡的电视剧免费网站有什么| 成人蜜臀av电影| 成人一区在线观看| 99re6这里只有精品视频在线观看| 国产成人av电影| 免费成人在线播放| 日本欧美肥老太交大片| 日本视频一区二区三区| 日本欧美久久久久免费播放网| 日韩国产在线观看一区| 午夜不卡av免费| 麻豆国产欧美一区二区三区| 久久99久久精品| 成人精品在线视频观看| 99热这里都是精品| 色妞www精品视频| 欧美网站一区二区| 在线不卡一区二区| 精品国一区二区三区| 国产婷婷色一区二区三区四区| 久久品道一品道久久精品| 亚洲欧洲美洲综合色网| 亚洲视频一区在线| 午夜免费久久看| 日本一区二区三区四区| 精品日本一线二线三线不卡| 久久精品夜夜夜夜久久| 亚洲品质自拍视频| 天天射综合影视| 91片在线免费观看| 精品1区2区3区| www国产精品av| 亚洲色图一区二区三区| 欧美a级一区二区| 国产福利精品一区二区| 91蜜桃婷婷狠狠久久综合9色| 欧美日韩精品高清| 亚洲精品一区二区三区四区高清| 国产精品欧美一区喷水| 亚洲国产wwwccc36天堂| 国内成人免费视频| 日本二三区不卡| 久久久精品国产99久久精品芒果| 国产精品美女久久久久久久久久久 | 国产色爱av资源综合区| 一区二区三区精品视频| 国产一区二区三区黄视频 | 欧美四级电影网| 久久久精品免费观看| 一区二区三区中文字幕精品精品 | 在线不卡免费欧美| 日本一区二区成人| 久久av中文字幕片| 欧美色老头old∨ideo| 国产亚洲视频系列| 性做久久久久久久免费看| 成人一区二区三区在线观看| 欧美一区二区精品在线| 亚洲女子a中天字幕| 国产精品综合av一区二区国产馆| 在线精品视频免费播放| 国产精品午夜春色av| 美女网站色91| 777亚洲妇女| 亚洲精品伦理在线| 成人午夜伦理影院| 日韩精品一区二区在线| 亚洲成人av电影| 欧美在线影院一区二区| 亚洲天天做日日做天天谢日日欢 | 国产精品成人免费在线| 久草精品在线观看| 91精品国产综合久久小美女| 日韩精品一区二区三区在线| 蜜臀av性久久久久蜜臀aⅴ| 精品免费一区二区三区| 精品国产露脸精彩对白| 日韩精品亚洲一区二区三区免费| 99国产精品99久久久久久| 欧美精品一区二区三区蜜桃| 日本怡春院一区二区| 欧美日韩视频专区在线播放| 亚洲中国最大av网站| 在线看日本不卡|