亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? bay_modoutclass.m

?? 最小二乘支持向量基的工具箱,希望對大家有用!
?? M
字號:
function [Pplus, Pmin, bay,model] = bay_modoutClass(model,X,priorpos,type,nb,bay)% Estimate the posterior class probabilities of a binary classifier using Bayesian inference%% >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2}, Xt)% >> [Ppos, Pneg] = bay_modoutClass(model, Xt)% % Calculate the probability that a point will belong to the% positive or negative classes taking into account the uncertainty% of the parameters. Optionally, one can express prior knowledge as% a probability between 0 and 1, where prior equal to 2/3 means% that the  prior positive class probability is 2/3 (more likely to% occur than the negative class).% For binary classification tasks with a 2 dimensional input space,% one can make a surface plot by replacing Xt by the string 'figure'.% % Full syntax% %     1. Using the functional interface:% % >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2,kernel, preprocess}, Xt)% >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2,kernel, preprocess}, Xt, prior)% >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2,kernel, preprocess}, Xt, prior, type)% >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2,kernel, preprocess}, Xt, prior, type, nb)% >> bay_modoutClass({X,Y,'classifier',gam,sig2, kernel, preprocess}, 'figure')% >> bay_modoutClass({X,Y,'classifier',gam,sig2, kernel, preprocess}, 'figure', prior)% >> bay_modoutClass({X,Y,'classifier',gam,sig2, kernel, preprocess}, 'figure', prior, type)% >> bay_modoutClass({X,Y,'classifier',gam,sig2, kernel, preprocess}, 'figure', prior, type, nb)% %       Outputs    %         Ppos    : Nt x 1 vector with probabilities that testdata Xt belong to the positive class%         Pneg    : Nt x 1 vector with probabilities that testdata Xt belong to the negative(zero) class%       Inputs    %         X        : N x d matrix with the inputs of the training data%         Y        : N x 1 vector with the outputs of the training data%         type     : 'function estimation' ('f') or 'classifier' ('c')%         gam      : Regularization parameter%         sig2     : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*) : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         Xt(*)    : Nt x d matrix with the inputs of the test data%         prior(*) : Prior knowledge of the balancing of the training data (or [])%         type(*)  : 'svd'(*), 'eig', 'eigs' or 'eign'%         nb(*)    : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation%%     2. Using the object oriented interface:% % >> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt)% >> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt, prior)% >> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt, prior, type)% >> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt, prior, type, nb)% >> bay_modoutClass(model, 'figure')% >> bay_modoutClass(model, 'figure', prior)% >> bay_modoutClass(model, 'figure', prior, type)% >> bay_modoutClass(model, 'figure', prior, type, nb)% %       Outputs    %         Ppos     : Nt x 1 vector with probabilities that testdata Xt belong to the positive class%         Pneg     : Nt x 1 vector with probabilities that testdata Xt belong to the negative(zero) class%         bay(*)   : Object oriented representation of the results of the Bayesian inference%         model(*) : Object oriented representation of the LS-SVM model%       Inputs    %         model    : Object oriented representation of the LS-SVM model%         Xt(*)    : Nt x d matrix with the inputs of the test data%         prior(*) :Prior knowledge of the balancing of the training data (or [])%         type(*)  : 'svd'(*), 'eig', 'eigs' or 'eign'%         nb(*)    : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation% % See also:%   bay_lssvm, bay_optimize, bay_errorbar, ROC% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab% default handlingif iscell(model),  model = trainlssvm(model);endif (model.type(1)~='c'),   error('this moderated output only possible for classification...'); endeval('type;','type=''svd'';');eval('nb;','nb=model.nb_data;');if ~(strcmpi(type,'svd') | strcmpi(type,'eig') | strcmpi(type,'eigs') | strcmpi(type,'eign')),  error('Eigenvalue decomposition via ''svd'', ''eig'', ''eigs'' or ''eign''...');endif strcmpi(type,'eign')  warning('The resulting errorbars are most probably not very usefull...');  endeval('priorpos;','priorpos = .5*ones(model.y_dim,1);');if isempty(priorpos), priorpos = .5*ones(model.y_dim,1); endif ~isstr(X) & size(X,2)~=model.x_dim,   error('dimension datapoints is not equal to dimension of trainingspoints...');endif ~isstr(X),      eval('[Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type,nb,bay);',...       '[Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type,nb);');  % plot the curve including error barselse  if (model.x_dim==2 & model.y_dim==1),    grain = 25;    Xr = postlssvm(model,model.xtrain);    disp(' COMPUTING PLOT OF MODERATED OUTPUT');    % make grid    Xmin = min(Xr,[],1);    Xmax = max(Xr,[],1);    Xs1 = (Xmin(1)):((Xmax(1)-Xmin(1))/grain):(Xmax(1));    Xs2 = (Xmin(2)):((Xmax(2)-Xmin(2))/grain):(Xmax(2));    grain = length(Xs1);        [XX,YY] = meshgrid(Xs1,Xs2);    l = size(XX,1)*size(XX,2);    X = [reshape(XX,l,1) reshape(YY,l,1)];    % compute moderated output     eval('[Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type,nb,bay);',...	 '[Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type,nb);');        figure;    hold on;    if isempty(model.kernel_pars),            title(['LS-SVM_{\gamma=' num2str(model.gam(1)) ...             '}^{' model.kernel_type(1:3) '}, with moderated output' ...             ' P_{pos} indicated by surface plot']);    else      title(['LS-SVM_{\gamma=' num2str(model.gam(1)) ', \sigma^2=' num2str(model.kernel_pars(1)) ...             '}^{' model.kernel_type(1:3) '}, with moderated output' ...             ' P_{pos} indicated by surface plot']);    end    xlabel('X_1');    ylabel('X_2');    zlabel('Y');    surf(Xs1,Xs2,reshape(Pplus,grain,grain));            % plot datapoints    s = find(model.ytrain(:,1)>0);    pp = plot3(Xr(s,1),Xr(s,2),ones(length(s),1) ,'*k');    s = find(model.ytrain(:,1)<=0);    pn = plot3(Xr(s,1),Xr(s,2),ones(length(s),1) ,'sk');    legend([pp pn],'positive class','negative class');    shading interp;    colormap cool;    axis([Xmin(1) Xmax(1) Xmin(2) Xmax(2)]);    %colorbar  else    error(['cannot make a plot, give points to estimate confidence bounds instead...']);  endendfunction [Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type, nb, bay)% multiclass moderated output: recursive callsif (model.y_dim>1),   %error('moderated output only possible for single class...');   for i=1:model.y_dim,    mff = model;    mff.y_dim=1;     mff.ytrain=model.ytrain(:,i);    mff.alpha = model.alpha(:,i);    mff.b = model.b(i);    mff.code='original';    mff.preprocess = 'original';    [Py(:,i), Pplus(:,i), Pmin(:,i), bay{i}] = bay_modoutClass(mff,X,priorpos(i),type,nb);  end  returnend%% evaluate LS-SVM in trainpoints, latent variables%Psv = latentlssvm(model,postlssvm(model,model.xtrain));eval('Pymp = mean(Psv(find(Psv>0))));','Pymp=1;');eval('Pymn = mean(Psv(find(Psv<=0)));','Pymp=-1;');%model.latent  = 'no';Py = latentlssvm(model,X);nD = size(X,1);% previous inferenceeval('[FF1, FF2, FF3, bay] = bay_lssvm(model,1,type,nb);');% kernel matricesomega = kernel_matrix(model.xtrain,model.kernel_type, model.kernel_pars);theta = kernel_matrix(model.xtrain,model.kernel_type, model.kernel_pars,X);oo = ones(1,model.nb_data)*omega;Zc = eye(model.nb_data) - ones(model.nb_data,1)*ones(1,model.nb_data)./model.nb_data;Diagmatrix = (1/bay.mu - 1./(bay.zeta*bay.eigvals+bay.mu));for i=1:nD,  kxx(i,1) = feval(model.kernel_type, X(i,:),X(i,:), model.kernel_pars);end% positive class  Mplusindex = (model.ytrain(:,1)>0);  Nplus = sum(Mplusindex);  Oplus = omega(:,Mplusindex);  Oplusplus = omega(Mplusindex, Mplusindex);  thetaplus = theta(Mplusindex,:);    for i =1:nD,    thetapluse(i,:) = (theta(:,i) - (1/Nplus)*sum(Oplus,2))'*Zc*bay.Rscores;  end    term1 = kxx - 2/(Nplus)*sum(thetaplus,1)';  term2 = Nplus^-2 *sum(sum(Oplusplus));  term3 = thetapluse.^2 * Diagmatrix;  var_plus = (term1 + term2)./bay.mu - term3;    % negative class  Mminindex = model.ytrain(:,1)<=0;  Nmin = sum(Mminindex);  Omin = omega(:,Mminindex);  Ominmin = omega(Mminindex, Mminindex);  thetamin = theta(Mminindex,:);    for i=1:nD,    thetamine(i,:) = (theta(:,i) - (1/Nmin)*sum(Omin,2))'*Zc*bay.Rscores;  end  term1 = kxx - 2/(Nmin)*sum(thetamin,1)';  term2 = (Nmin^-2)*sum(sum(Ominmin));  term3 = thetamine.^2*Diagmatrix;    var_min = (term1+term2)./bay.mu-term3;    % Ppos, Pmin, resfor i=1:nD,      pdfplus = priorpos   * normpdf(Py(i),Pymp,sqrt(1/bay.zeta+var_plus(i)));  pdfmin = (1-priorpos)* normpdf(Py(i),Pymn,sqrt(1/bay.zeta+var_min(i)));  som = pdfmin+pdfplus;  Pplus(i,1) = pdfplus./som;  Pmin(i,1) = pdfmin./som;end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲国产一区二区a毛片| 日韩欧美另类在线| 成人精品一区二区三区四区 | 色婷婷亚洲精品| 成人网男人的天堂| 丰满亚洲少妇av| 成人av综合在线| 色偷偷成人一区二区三区91| 97久久精品人人澡人人爽| 99精品国产热久久91蜜凸| 99精品视频在线观看| 色香蕉成人二区免费| 欧美日韩一区二区三区视频| 欧美日本在线视频| 日韩欧美国产一二三区| 久久精品欧美日韩精品| 日韩一区中文字幕| 一区二区三区鲁丝不卡| 丝袜美腿一区二区三区| 国产91精品入口| 91小视频免费观看| 91精品国产欧美日韩| 久久综合一区二区| 亚洲激情av在线| 美女在线视频一区| 波多野结衣在线aⅴ中文字幕不卡| 99精品在线观看视频| 欧美日韩国产首页| 中文字幕欧美日本乱码一线二线| 亚洲日韩欧美一区二区在线| 天天色 色综合| 国产91丝袜在线播放0| 91福利资源站| 久久一夜天堂av一区二区三区| 中文字幕亚洲在| 青青草原综合久久大伊人精品 | 在线观看av一区| 精品久久国产字幕高潮| 亚洲人成网站精品片在线观看| 天天色图综合网| 97精品超碰一区二区三区| 日韩欧美在线123| 中文字幕在线不卡视频| 免费的成人av| 精品视频一区二区三区免费| 国产午夜精品久久| 免费高清在线一区| 欧美在线视频你懂得| 国产日韩欧美麻豆| 久久精品噜噜噜成人88aⅴ | 日韩欧美国产精品| 亚洲天堂av一区| 久久99久久久久| 欧美一区二区视频在线观看2022| 亚洲欧美电影一区二区| 国产成人精品aa毛片| 欧美va亚洲va香蕉在线| 日日夜夜精品视频天天综合网| av电影在线观看完整版一区二区| 精品国产亚洲在线| 蜜乳av一区二区| 欧美一区中文字幕| 婷婷成人综合网| 欧美色男人天堂| 亚洲午夜在线视频| 色婷婷av一区| 一区二区三区在线免费视频| 国产盗摄视频一区二区三区| 日韩你懂的电影在线观看| 亚洲最新视频在线观看| 国产999精品久久久久久绿帽| 欧美成人vps| 美国欧美日韩国产在线播放| 3atv在线一区二区三区| 天天综合色天天| 欧美大片拔萝卜| 黄页网站大全一区二区| 欧美mv日韩mv亚洲| 国产一区二区久久| 欧美激情一区二区三区不卡| 国产成人亚洲综合色影视| 日本一区二区综合亚洲| 国产91丝袜在线播放0| 国产精品久久久久影院亚瑟| 成年人国产精品| 亚洲欧美另类在线| 欧美日韩大陆一区二区| 日韩二区三区在线观看| 日韩精品中午字幕| 国产黑丝在线一区二区三区| 国产精品水嫩水嫩| 99re这里都是精品| 亚洲成人7777| 欧美变态口味重另类| 国产精品自拍av| 亚洲欧美一区二区不卡| 在线观看一区二区视频| 日韩一区精品视频| 久久久久久久av麻豆果冻| www.亚洲国产| 日韩国产欧美在线观看| 国产亚洲欧洲一区高清在线观看| 国产精品一区二区x88av| 亚洲乱码国产乱码精品精98午夜| 欧美日韩亚洲另类| 国产麻豆一精品一av一免费| 成人免费在线观看入口| 在线播放中文字幕一区| 成人精品高清在线| 午夜在线电影亚洲一区| 久久久精品日韩欧美| 欧美在线视频日韩| 国产成人亚洲精品狼色在线| 亚洲一区二区成人在线观看| 欧美精品一区二区久久婷婷| 一本久久综合亚洲鲁鲁五月天| 日韩电影在线观看电影| 国产精品国产三级国产aⅴ中文 | 久久99国内精品| 最新日韩在线视频| 日韩亚洲欧美综合| 91麻豆6部合集magnet| 久久er99热精品一区二区| 中文字幕一区日韩精品欧美| 日韩免费观看高清完整版| 99久久久精品| 国产专区综合网| 日本少妇一区二区| 亚洲bt欧美bt精品777| 亚洲欧洲一区二区三区| 久久这里都是精品| 欧美肥妇free| 在线精品视频一区二区三四| 国产寡妇亲子伦一区二区| 麻豆传媒一区二区三区| 亚洲成人自拍网| 亚洲图片你懂的| 国产精品久久久久aaaa樱花| 亚洲精品一区二区三区99| 欧美日韩卡一卡二| 欧美影视一区在线| 91精品1区2区| 日本道色综合久久| 91免费在线播放| av高清久久久| 91天堂素人约啪| 99免费精品视频| 99国产精品99久久久久久| 成人理论电影网| 国产精品99久久久| 国产成人精品影院| 成人综合婷婷国产精品久久蜜臀| 韩日欧美一区二区三区| 狠狠狠色丁香婷婷综合激情| 极品美女销魂一区二区三区免费 | 国产亚洲精品精华液| 亚洲精品一区二区三区四区高清| 精品久久久久一区| 久久婷婷一区二区三区| 久久久激情视频| 欧美国产丝袜视频| 亚洲精选免费视频| 午夜精品福利久久久| 麻豆精品国产91久久久久久| 狠狠色丁香婷综合久久| 大陆成人av片| 在线免费不卡视频| 日韩精品在线网站| 国产欧美1区2区3区| 亚洲欧洲日产国码二区| 一区二区三区四区亚洲| 午夜不卡av免费| 国产精品正在播放| 99热这里都是精品| 欧美一区二区在线观看| 久久久亚洲高清| 亚洲美女视频在线观看| 奇米影视一区二区三区| 国产精品亚洲成人| 日本韩国欧美在线| 日韩精品一区二区三区视频在线观看 | 91精品91久久久中77777| 欧美日韩国产高清一区二区三区 | 国产v综合v亚洲欧| 在线观看亚洲a| 精品理论电影在线| 一区二区三区四区在线播放| 蜜桃视频在线观看一区二区| 成人av电影免费在线播放| 在线视频一区二区免费| 精品国产亚洲在线| 亚洲一区在线免费观看| 国产精品系列在线播放| 欧美日韩成人在线| 欧美国产精品一区| 青青草原综合久久大伊人精品| 成人av免费观看| 精品国内二区三区| 午夜视频久久久久久| caoporen国产精品视频|