亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? bay_lssvm.m

?? 最小二乘支持向量基的工具箱,希望對(duì)大家有用!
?? M
字號(hào):
function [A,B,C,D,E] = bay_lssvm(model,level,type, nb, bay)% Compute the posterior cost for the 3 levels in Bayesian inference% % >> cost = bay_lssvm({X,Y,type,gam,sig2}, level, type)% >> cost = bay_lssvm(model              , level, type)% % Description% Estimate the posterior probabilities of model (hyper-) parameters% on the different inference levels:%     - First level: In the first level one optimizes the support values alpha 's and the bias b.%     - Second level: In the second level one optimizes the regularization parameter gam.%     - Third level: In the third level one optimizes the kernel%                    parameter. In the case of the common 'RBF_kernel' the kernel%                    parameter is the bandwidth sig2. %% By taking the negative logarithm of the posterior and neglecting all constants, one% obtains the corresponding cost. Computation is only feasible for% one dimensional output regression and binary classification% problems. Each level has its different in- and output syntax.% %% Full syntax% %     1. Outputs on the first level%% >> [costL1,Ed,Ew,bay] = bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, 1)% >> [costL1,Ed,Ew,bay] = bay_lssvm(model, 1)% %       costL1 : Cost proportional to the posterior%       Ed(*)  : Cost of the fitting error term%       Ew(*)  : Cost of the regularization parameter%       bay(*) : Object oriented representation of the results of the Bayesian inference% %     2. Outputs on the second level% % >> [costL2,DcostL2, optimal_cost, bay] = bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, 2)% >> [costL2,DcostL2, optimal_cost, bay] = bay_lssvm(model, 2)% %       costL2     : Cost proportional to the posterior on the second level%       DcostL2(*) : Derivative of the cost%       optimal_cost(*) : Optimality of the regularization parameter (optimal = 0)%       bay(*)     : Object oriented representation of the results of the Bayesian inference% %     3. Outputs on the third level% % >> [costL3,bay] = bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, 3)% >> [costL3,bay] = bay_lssvm(model, 3)% %       costL3 : Cost proportional to the posterior on the third level%       bay(*) : Object oriented representation of the results of the Bayesian inference% %     4. Inputs using the functional interface% % >> bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, level)% >> bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, level, type)% >> bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, level, type, nb)% %         X            : N x d matrix with the inputs of the training data%         Y            : N x 1 vector with the outputs of the training data%         type         : 'function estimation' ('f') or 'classifier' ('c')%         gam          : Regularization parameter%         sig2         : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)    : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         level        : 1, 2, 3%         type(*)      : 'svd'(*), 'eig', 'eigs', 'eign'%         nb(*)        : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation% %     5. Inputs using the object oriented interface% % >> bay_lssvm(model, level, type, nb)% %         model    : Object oriented representation of the LS-SVM model%         level    : 1, 2, 3%         type(*)  : 'svd'(*), 'eig', 'eigs', 'eign'%         nb(*)    : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation% %% See also:%   bay_lssvmARD, bay_optimize, bay_modoutClass, bay_errorbar% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initiate and ev. preprocess%if ~isstruct(model), model = initlssvm(model{:}); endmodel = prelssvm(model);if model.y_dim>1,  error(['Bayesian framework restricted to 1 dimensional regression' ...	 ' and binary classification tasks']);end%% train with the matlab routines%model = adaptlssvm(model,'implementation','MATLAB');eval('nb;','nb=ceil(sqrt(model.nb_data));');if ~(level==1 | level==2 | level==3),  error('level must be 1, 2 or 3.');end%% delegate functions%if level==1,  eval('type;','type=''train'';');  %[cost, ED, EW, bay, model] = lssvm_bayL1(model, type);  eval('[A,B,C,D,E] = lssvm_bayL1(model,type,nb,bay);','[A,B,C,D,E] = lssvm_bayL1(model,type,nb);');  elseif level==2,    % default type  eval('type;','type=''svd'';');  %[costL2, DcostL2, optimal, bay, model] = lssvm_bayL2(model, type);    eval('[A,B,C,D,E] = lssvm_bayL2(model,type,nb,bay);',...       '[A,B,C,D,E] = lssvm_bayL2(model,type,nb);')  elseif level==3,  % default type  eval('type;','type=''svd'';');  %[cost, bay, model] = lssvm_bayL3(model, bay);  [A,B,C] = lssvm_bayL3(model,type,nb);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  FIRST LEVEL                   %%                                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [cost, Ed, Ew, bay, model] = lssvm_bayL1(model, type, nb, bay)%% [Ed, Ew, cost,model] = lssvm_bayL1(model)% [bay,model] = lssvm_bayL1(model)%% type = 'retrain', 'train', 'svd'%%if ~(strcmpi(type,'train') | strcmpi(type,'retrain') | strcmpi(type,'eig') | strcmpi(type,'eigs')| strcmpi(type,'svd')| strcmpi(type,'eign')),  error('type should be ''train'', ''retrain'', ''svd'', ''eigs'' or ''eign''.');end%type(1)=='t'%type(1)=='n'N = model.nb_data;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% compute Ed, Ew en costL1 based on training solution %% TvG, Financial Timeseries Prediction using LS-SVM, 27-28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if (type(1)=='t'), % train   % find solution of ls-svm  model = trainlssvm(model);  % prior %  if model.type(1) == 'f',    Ew = .5*sum(model.alpha.*  (model.ytrain(1:model.nb_data,:) - model.alpha./model.gam - model.b));  elseif model.type(1) == 'c',    Ew = .5*sum(model.alpha.*model.ytrain(1:model.nb_data,:).*  ...		((1-model.alpha./model.gam)./model.ytrain(1:model.nb_data,:) - model.b));  end  % likelihood  Ed = .5.*sum((model.alpha./model.gam).^2);    % posterior  cost = Ew+model.gam*Ed;            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute Ed, Ew en costL1 based on SVD or nystrom %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%else   if nargin<4,    [bay.eigvals, bay.scores, ff, omega_r] = kpca(model.xtrain(model.selector,1:model.x_dim), ...                                                  model.kernel_type, model.kernel_pars, [],type,nb,'original');        bay.eigvals = bay.eigvals.*(N-1);    bay.tol = 1000*eps;    bay.Peff = find(bay.eigvals>bay.tol);    bay.Neff = length(bay.Peff);    bay.eigvals = bay.eigvals(bay.Peff);    bay.scores = bay.scores(:,bay.Peff);      %Zc = eye(N)-ones(model.nb_data)/model.nb_data;             %disp('rescaling the scores');    for i=1:bay.Neff,      bay.Rscores(:,i) = bay.scores(:,i)./sqrt(bay.scores(:,i)'*bay.eigvals(i)*bay.scores(:,i));    end    end  Y = model.ytrain(model.selector,1:model.y_dim);      %%% Ew %%%%  % (TvG: 4.75 - 5.73))   YTM = (Y'-mean(Y))*bay.scores;  Ew = .5*(YTM*diag(bay.eigvals)*diag((bay.eigvals+1./model.gam).^-2))*YTM';     %%% cost %%%  YTM = (Y'-mean(Y));  %if model.type(1) == 'c', % 'classification'  (TvG: 5.74)  %  cost = .5*YTM*[diag(bay.eigvals); zeros(model.nb_data-bay.Neff,bay.Neff)]*diag((bay.eigvals+1./model.gam).^-1)*bay.scores'*YTM';  %elseif model.type(1) == 'f', % 'function estimation' % (TvG: 4.76)  			       % + correctie of zero eignwaardes    cost = .5*(YTM*model.gam*YTM')-.5*YTM*bay.scores*diag((1+1./(model.gam.*bay.eigvals)).^-1*model.gam)*bay.scores'*YTM';     %end    %%% Ed %%%  Ed = (cost-Ew)/model.gam;endbay.costL1 = cost;bay.Ew = Ew;bay.Ed = Ed;bay.mu = (N-1)/(2*bay.costL1);bay.zeta = model.gam*bay.mu;  % SECOND LEVEL%%function [costL2, DcostL2, optimal, bay, model] = lssvm_bayL2(model,type,nb,bay)%%%if ~(strcmpi(type,'eig') | strcmpi(type,'eigs')| strcmpi(type,'svd')| strcmpi(type,'eign')),  error('The used type needs to be ''svd'', ''eigs''  or ''eign''.')end  N = model.nb_data;  % bayesian interference level 1    eval('[cost, Ed, Ew, bay, model] = bay_lssvm(model,1,type,nb,bay); ',...       '[cost, Ed, Ew, bay, model] = bay_lssvm(model,1,type,nb);');      all_eigvals = zeros(N,1); all_eigvals(bay.Peff) = bay.eigvals;   % Number of effective parameters  bay.Geff = 1 + sum(model.gam.*all_eigvals ./(1+model.gam.*all_eigvals));  bay.mu = .5*(bay.Geff-1)/(bay.Ew);  bay.zeta = .5*(N-bay.Geff)/bay.Ed;  % ideally: bay.zeta = model.gam*bay.mu;    % log posterior (TvG: 4.73 - 5.71)  costL2 = sum(log(all_eigvals+1./model.gam)) + (N-1).*log(bay.Ew+model.gam*bay.Ed);  % gradient (TvG: 4.74 - 5.72)     DcostL2 = -sum(1./(all_eigvals.*(model.gam.^2)+model.gam)) ...	    + (N-1)*(bay.Ed/(bay.Ew+model.gam*bay.Ed));  % endcondition fullfilled if optimal == 0;  optimal = model.gam  - (N-bay.Geff)/(bay.Geff-1) * bay.Ew/bay.Ed; 	           % update structure bay  bay.optimal = optimal;  bay.costL2 = costL2;  bay.DcostL2 = DcostL2;      % THIRD LEVEL%%function [costL3, bay, model] = lssvm_bayL3(model,type,nb)%% costL3 = lssvm_bayL3(model, type)% if ~(strcmpi(type,'svd') | strcmpi(type,'eigs') | strcmpi(type,'eign')),   error('The used type needs to be ''svd'', ''eigs'' or ''eign''.')end% lower inference levels;[model,costL2, bay] = bay_optimize(model,2,type,nb);% test Neff << NN = model.nb_data;if sqrt(N)>bay.Neff,  %model.kernel_pars  %model.gam  warning on;  warning(['Number of degrees of freedom not tiny with respect to' ...	   ' the number of datapoints. The approximation is not very good.']);  warning offend% construct all eigenvaluesall_eigvals = zeros(N,1); all_eigvals(bay.Peff) = bay.eigvals; % L3 cost function%costL3 = sqrt(bay.mu^bay.Neff*bay.zeta^(N-1)./((bay.Geff-1)*(N-bay.Geff)*prod(bay.mu+bay.zeta.*all_eigvals)));%costL3 = .5*bay.costL2 - log(sqrt(2/(bay.Geff-1))) - log(sqrt(2/(N-bay.Geff)))costL3 = -(bay.Neff*log(bay.mu) + (N-1)*log(bay.zeta)...	 - log(bay.Geff-1) -log(N-bay.Geff) - sum(log(bay.mu+bay.zeta.*all_eigvals)));bay.costL3 = costL3;  

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本视频一区二区| 国产一区高清在线| 国产欧美日韩精品在线| 欧美综合亚洲图片综合区| 国产在线不卡一区| 午夜精品久久久久久不卡8050| 国产日韩欧美高清在线| 日韩一级片网址| 欧美性色黄大片手机版| www.亚洲精品| 国产乱淫av一区二区三区| 亚洲国产精品久久人人爱蜜臀| 国产亲近乱来精品视频| 欧美不卡视频一区| 91麻豆精品国产自产在线观看一区| 成人一区二区三区视频在线观看| 免费人成黄页网站在线一区二区| 一区二区三区色| 国产精品乱码人人做人人爱 | 色88888久久久久久影院按摩| 精品一二三四区| 免费成人小视频| 日本不卡一区二区| 天堂成人国产精品一区| 一区二区三区资源| 亚洲天堂成人在线观看| 亚洲国产精品传媒在线观看| 337p粉嫩大胆色噜噜噜噜亚洲 | 欧美日韩国产精品自在自线| 一本在线高清不卡dvd| 成人av在线电影| 懂色av中文一区二区三区| 国产综合色视频| 国产一区二区三区最好精华液| 久久精品国内一区二区三区| 青青青爽久久午夜综合久久午夜| 天堂成人国产精品一区| 婷婷丁香久久五月婷婷| 五月天一区二区三区| 日韩综合小视频| 视频一区二区三区中文字幕| 亚洲成a人片综合在线| 亚洲777理论| 日本91福利区| 国产一区二区三区电影在线观看| 国产在线播放一区二区三区| 国产美女精品在线| 成人免费视频caoporn| 97aⅴ精品视频一二三区| 99精品视频在线观看| 日本韩国一区二区| 欧美日本一道本| 欧美大片免费久久精品三p| 欧美精品一区二区不卡| 国产欧美日韩在线观看| 亚洲欧美另类小说| 午夜亚洲国产au精品一区二区| 日韩不卡一区二区| 韩国精品一区二区| 99麻豆久久久国产精品免费优播| 日本国产一区二区| 在线不卡的av| 中文字幕欧美日本乱码一线二线| 亚洲欧洲日本在线| 日韩电影在线观看网站| 国产一区二区三区观看| 91麻豆成人久久精品二区三区| 欧美日韩你懂得| 久久久噜噜噜久噜久久综合| 国产精品不卡在线观看| 亚洲一区二区三区四区五区中文 | 一区二区三区欧美在线观看| 亚洲一区二区欧美| 国产一区欧美二区| 色老头久久综合| 欧美不卡一区二区| 亚洲免费毛片网站| 久久99精品国产91久久来源| 不卡的电影网站| 日韩欧美在线不卡| 亚洲人成精品久久久久| 理论电影国产精品| 色国产精品一区在线观看| 欧美电视剧在线观看完整版| 综合欧美亚洲日本| 久久疯狂做爰流白浆xx| 色综合久久久久网| 久久久国际精品| 亚洲成人你懂的| 不卡av在线网| 日韩欧美高清在线| 一区二区三区四区亚洲| 国产在线精品一区二区| 欧美伊人精品成人久久综合97| 久久日一线二线三线suv| 亚洲一区在线播放| 成人高清伦理免费影院在线观看| 欧美一区二区大片| 樱桃视频在线观看一区| 国产一区二区不卡在线| 在线综合视频播放| 亚洲国产精品精华液网站| 国产.精品.日韩.另类.中文.在线.播放| 欧美性色黄大片| 亚洲欧美日韩中文播放| 国产v综合v亚洲欧| 久久综合久久鬼色| 美女视频免费一区| 欧美色综合影院| 中文字幕五月欧美| 精品无人码麻豆乱码1区2区 | 欧美精品一区二区三区四区| 亚洲高清免费观看高清完整版在线观看| 粗大黑人巨茎大战欧美成人| 日韩亚洲国产中文字幕欧美| 一区二区三区 在线观看视频| 国产91精品露脸国语对白| 欧美videofree性高清杂交| 婷婷丁香久久五月婷婷| 欧美三级韩国三级日本一级| 亚洲图片欧美激情| 成人免费不卡视频| 国产日韩欧美a| 国产精品99久久久久久似苏梦涵 | 日韩精品一区二区三区在线观看 | 日韩欧美一区在线观看| 午夜免费久久看| 欧美精选在线播放| 亚洲成人激情综合网| 欧美日韩一区视频| 亚洲国产综合在线| 在线免费视频一区二区| 亚洲老司机在线| 色婷婷狠狠综合| 亚洲综合色区另类av| 日本乱人伦一区| 亚洲在线视频一区| 欧美高清hd18日本| 日本网站在线观看一区二区三区| 欧美精品日日鲁夜夜添| 日本中文字幕一区| 精品久久久久久综合日本欧美| 久久国产精品无码网站| xnxx国产精品| 国产高清在线精品| 亚洲欧洲日韩av| 欧美亚洲愉拍一区二区| 丝袜亚洲另类丝袜在线| 91精品国产欧美日韩| 国内久久精品视频| 国产精品国产三级国产普通话三级| 成人午夜视频网站| 亚洲激情图片qvod| 欧美丰满少妇xxxxx高潮对白 | 一区二区三区丝袜| 欧美久久久久久久久久| 久久91精品国产91久久小草| 久久久久久久电影| 色婷婷久久久综合中文字幕| 午夜视黄欧洲亚洲| 久久先锋影音av鲁色资源| 国产成人av电影在线播放| 专区另类欧美日韩| 欧美男生操女生| 国产一区二区三区电影在线观看 | 91麻豆精品秘密| 天堂一区二区在线免费观看| 精品欧美黑人一区二区三区| 成人性生交大片免费 | 黑人巨大精品欧美一区| 国产精品久久久久久户外露出| 欧美亚洲国产一区在线观看网站| 免费观看在线综合色| 日本一区二区三区在线不卡| 在线一区二区视频| 韩国欧美国产一区| 一区二区三区国产精华| 日韩视频免费直播| aaa欧美色吧激情视频| 日本欧美韩国一区三区| 国产精品伦理在线| 日韩美一区二区三区| 99riav一区二区三区| 久久国产麻豆精品| 亚洲一区二区三区四区中文字幕| 久久久久久**毛片大全| 欧美三级视频在线观看| 国产98色在线|日韩| 亚洲高清在线精品| 中文字幕一区二区不卡| 日韩欧美中文字幕一区| 色屁屁一区二区| 成人性生交大片免费看在线播放| 奇米影视一区二区三区小说| 亚洲人成在线观看一区二区| 精品88久久久久88久久久 | 中文字幕中文字幕一区| 日韩欧美一级精品久久| 在线影视一区二区三区| 成人激情开心网|