亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? readme

?? libsvm-demo,支持向量機的演示程序,對初學(xué)者很有用!
??
字號:
-------------------------------------------------- Document for MATLAB interface of LIBSVM --------------------------------------------------Introduction============This tool provides a simple interface to LIBSVM, a library for support vectormachines (http://www.csie.ntu.edu.tw/~cjlin/libsvm). It is very easy to use asthe usage and the way of specifying parameters is the same as that of LIBSVM.Installation============On Unix systems, we recommend using GNU g++ as your compiler andtype 'make' to build 'svmtrain.mexglx' and 'svmpredict.mexglx'.Note that we assume your MATLAB is installed in '/usr/local/matlab',if not, please change MATLABDIR in Makefile.Example:        linux> makeOn Windows systems, pre-built 'svmtrain.dll' and 'svmpredict.dll' areincluded in this package, so no need to conduct installation. If youhave modified the sources and would like to re-build the package, type'mex -setup' in MATLAB to choose a compiler for mex first. Then type'make' to start the installation.Example:        matlab> mex -setup        (ps: MATLAB will show the following messages to setup default compiler.)        Please choose your compiler for building external interface (MEX) files:         Would you like mex to locate installed compilers [y]/n? y        Select a compiler:         [1] Microsoft Visual C/C++ version 6.0 in C:\Program Files\Microsoft Visual Studio         [0] None         Compiler: 1        Please verify your choices:         Compiler: Microsoft Visual C/C++ 6.0         Location: C:\Program Files\Microsoft Visual Studio         Are these correct?([y]/n): y        matlab> makeUsage=====matlab> model = svmtrain(training_label_vector, training_instance_matrix, [,'libsvm_options']);        -training_label_vector:            An m by 1 vector of training labels.        -training_instance_matrix:            An m by n matrix of m training instances with n features.            It can be dense or sparse.        -libsvm_option:            A string of training options in the same format as that of LIBSVM.matlab> [predicted_label, accuracy] = svmpredict(testing_label_vector, testing_instance_matrix, model [,'libsvm_option']);        -testing_label_vector:            An m by 1 vector of prediction labels. If labels of test            data are unknown, simply use any random values.        -testing_instance_matrix:            An m by n matrix of m testing instances with n features.            It can be dense or sparse.        -model:            The output of svmtrain.        -libsvm_option:            A string of testing options in the same format as that of LIBSVM.Returned Model Structure========================The 'svmtrain' function returns a model which can be used for futureprediction.  It is a structure and is organized as [Parameters, nr_class,totalSV, rho, Label, ProbA, ProbB, nSV, sv_coef, SVs]:        -Parameters: parameters        -nr_class: number of classes; = 2 for regression/one-class svm        -totalSV: total #SV        -rho: -b of the decision function(s) wx+b        -Label: label of each class; empty for regression/one-class SVM        -ProbA: pairwise probability information; empty if -b 0 or in one-class SVM        -ProbB: pairwise probability information; empty if -b 0 or in one-class SVM        -nSV: number of SVs for each class; empty for regression/one-class SVM        -sv_coef: coefficients for SVs in decision functions        -SVs: support vectorsIf you do not use the option '-b 1', ProbA and ProbB are emptymatrices. If the '-v' option is specified, cross validation isconducted and the returned model is just a scalar: cross-validationaccuracy for classification and mean-squared error for regression.More details about this model can be found in LIBSVM FAQ(http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html) and LIBSVMimplementation document(http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf).Result of Prediction====================The function 'svmpredict' has two outputs. The first one,predicted_label, is in general a vector of predicted labels. If '-b 1'is specified as an option of 'svmpredict' and the input modelpossesses probability information, it is a matrix where additionalelements in each row are probabilities that the test data is in eachclass. Note that the order of classes is the same as Label in themodel structure. The second output, accuracy, is a vector includingaccuracy (for classification), mean squared error, and squaredcorrelation coefficient (for regression).Examples========matlab> load heart_scale.matmatlab> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 2');matlab> [predict_label, accuracy] = svmpredict(heart_scale_label, heart_scale_inst, model); % test the training dataFor probability estimates, you need '-b 1' for training and testing:matlab> load heart_scale.matmatlab> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 2 -b 1');matlab> load heart_scale.matmatlab> [predict_label, accuracy] = svmpredict(heart_scale_label, heart_scale_inst, model, '-b 1');Other Utilities===============A simple matlab program read_sparse.m reads files in libsvm format: [svm_lbl, svm_data] = read_sparse(fname); Two outputs are labels and instances, which can then be used as inputsof svmtrain or svmpredict. This code was initiated by Hsuan-Tien Linfrom Caltech and rewritten by Rong-En Fan from National TaiwanUniversity.Additional Information======================This interface was initially written by Jun-Cheng Chen, Kuan-Jen Peng,Chih-Yuan Yang and Chih-Huai Cheng from Department of ComputerScience, National Taiwan University. The current version was preparedby Rong-En Fan. If you find this tool useful, please cite LIBSVM asfollowsChih-Chung Chang and Chih-Jen Lin, LIBSVM : a library forsupport vector machines, 2001. Software available athttp://www.csie.ntu.edu.tw/~cjlin/libsvmFor any question, please contact Chih-Jen Lin <cjlin@csie.ntu.edu.tw>.

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美久久一区二区| 亚洲国产日韩综合久久精品| 自拍偷拍亚洲欧美日韩| 日韩和欧美一区二区三区| www.亚洲色图| 欧美tk丨vk视频| 偷拍一区二区三区| 日本电影欧美片| 国产精品久久久久影院色老大 | 中文字幕一区免费在线观看| 日本不卡一二三| 欧美久久久一区| 一区二区激情视频| 在线亚洲人成电影网站色www| 久久久99免费| 精品一区二区免费| 日韩一区二区三区电影在线观看| 亚洲综合自拍偷拍| 91首页免费视频| 中文字幕不卡在线| 顶级嫩模精品视频在线看| 精品国产一区二区精华| 日本伊人午夜精品| 精品视频免费看| 亚洲一二三四区| 欧美日韩一区三区| 亚洲国产成人av网| 欧美美女直播网站| 日韩国产一二三区| 日韩女优av电影| 国产一区二区调教| 国产日韩精品一区二区三区 | 久久这里只有精品6| 精品一区二区三区影院在线午夜| 69堂成人精品免费视频| 日本女优在线视频一区二区 | 欧美一区二区三区视频在线观看| 亚洲一区av在线| 欧美精选午夜久久久乱码6080| 亚洲一区二区偷拍精品| 欧美精品丝袜久久久中文字幕| 亚洲va天堂va国产va久| 日韩欧美高清一区| 国产精品99久久久久久宅男| 欧美激情一区二区三区在线| 99久久免费视频.com| 亚洲一区二区美女| 精品欧美乱码久久久久久1区2区| 狠狠狠色丁香婷婷综合久久五月| 中文字幕高清一区| 在线免费观看不卡av| 日韩av一区二区三区四区| 精品美女被调教视频大全网站| 国产综合色产在线精品| 国产精品久久毛片a| 欧美三级日韩三级国产三级| 美腿丝袜一区二区三区| 中文字幕 久热精品 视频在线| 99精品国产91久久久久久 | 亚洲欧美国产高清| 777精品伊人久久久久大香线蕉| 精品一区二区免费| 亚洲美女区一区| 欧美不卡视频一区| 91碰在线视频| 蜜臀av性久久久久av蜜臀妖精| 国产色产综合产在线视频| 色综合一区二区| 国内外成人在线| 亚洲午夜在线视频| 国产欧美精品一区| 在线不卡中文字幕| 99这里只有精品| 久久国产尿小便嘘嘘尿| 亚洲人成电影网站色mp4| 日韩欧美国产一区在线观看| 91丝袜美腿高跟国产极品老师| 日本午夜精品一区二区三区电影 | 亚洲电影第三页| 国产日韩欧美一区二区三区乱码| 欧美日韩一区二区在线视频| 日本色综合中文字幕| 久久久不卡网国产精品二区| 欧美二区乱c少妇| 一区二区三区四区高清精品免费观看| 欧美一区二区网站| 色视频欧美一区二区三区| 国产成人一级电影| 麻豆成人91精品二区三区| 亚洲一区二区3| 亚洲天堂精品视频| 国产日韩av一区| 精品精品国产高清a毛片牛牛| 欧美日韩激情一区二区| 色爱区综合激月婷婷| 国产成人精品一区二区三区四区 | 一区二区久久久久| 中文字幕国产一区| 久久综合久久综合九色| 91麻豆精品91久久久久久清纯 | 欧美va在线播放| 777久久久精品| 欧美高清视频一二三区| 欧美色男人天堂| 欧美怡红院视频| 91视频观看免费| 99精品视频一区二区三区| 成人免费看片app下载| 春色校园综合激情亚洲| 国产a区久久久| 成人性生交大片免费看视频在线| 精品一二线国产| 国产一区欧美一区| 国产一区二区精品久久| 国产一区二区三区四区五区入口| 精品一区二区三区蜜桃| 国内精品伊人久久久久av影院| 久久精品国产亚洲5555| 久久国产夜色精品鲁鲁99| 国内一区二区在线| 国产激情一区二区三区四区 | 国产一二精品视频| 国产精品一卡二卡| eeuss鲁片一区二区三区| www.日韩av| 欧美日韩国产成人在线免费| 欧美一区二区黄色| 国产亚洲短视频| 国产精品人成在线观看免费| 亚洲精品国产视频| 秋霞成人午夜伦在线观看| 国产一区二区不卡在线| 99久久精品免费看国产| 欧美日韩在线播放一区| 日韩美女视频在线| 国产精品乱人伦中文| 亚洲自拍与偷拍| 久久精品国产色蜜蜜麻豆| 成人激情免费网站| 欧美日韩国产小视频在线观看| 欧美一二区视频| 国产精品久久久久久久久免费桃花 | 日韩精品一区二区三区老鸭窝| 国产欧美日韩三区| 亚洲图片一区二区| 国产一区日韩二区欧美三区| 色婷婷一区二区三区四区| 欧美一区二区三区在线观看视频| 国产日产欧美一区二区视频| 亚洲一区av在线| 国产一区中文字幕| 欧美三级资源在线| 中文无字幕一区二区三区| 一区二区三区视频在线看| 麻豆精品在线看| 91国模大尺度私拍在线视频| 日韩欧美一区二区免费| 亚洲精品视频在线| 国产精品资源站在线| 欧美日韩1234| 1024成人网| 国产一区二区毛片| 欧美精品久久99久久在免费线 | eeuss鲁一区二区三区| 日韩欧美在线综合网| 一区二区三区加勒比av| 国产91精品在线观看| 在线播放国产精品二区一二区四区 | 国产成人aaa| 欧美一区二区三区在线看| 一区二区三区不卡视频| 国产成人一区二区精品非洲| 717成人午夜免费福利电影| 亚洲欧洲综合另类在线| 国产成人啪免费观看软件| 日韩欧美在线观看一区二区三区| 亚洲精品久久7777| 99亚偷拍自图区亚洲| 欧美精品一区二区在线播放| 天天综合日日夜夜精品| 色菇凉天天综合网| 国产精品美女一区二区| 国产精品系列在线观看| www激情久久| 精品一区二区日韩| 日韩精品综合一本久道在线视频| 亚瑟在线精品视频| 欧美午夜在线观看| 亚洲国产成人高清精品| 欧美日韩精品久久久| 一区二区三区四区视频精品免费| 成人一级黄色片| 国产日韩影视精品| 粉嫩一区二区三区在线看| 国产免费成人在线视频| 国产激情视频一区二区三区欧美 | 日本中文字幕一区| 91精品国产美女浴室洗澡无遮挡| 亚洲第一搞黄网站| 欧美日韩国产区一|