?? ex4.c
字號:
/* $Id: ex4.C 2837 2008-05-08 17:23:37Z roystgnr $ *//* The Next Great Finite Element Library. *//* Copyright (C) 2003 Benjamin S. Kirk *//* This library is free software; you can redistribute it and/or *//* modify it under the terms of the GNU Lesser General Public *//* License as published by the Free Software Foundation; either *//* version 2.1 of the License, or (at your option) any later version. *//* This library is distributed in the hope that it will be useful, *//* but WITHOUT ANY WARRANTY; without even the implied warranty of *//* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *//* Lesser General Public License for more details. *//* You should have received a copy of the GNU Lesser General Public *//* License along with this library; if not, write to the Free Software *//* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ // <h1>Example 4 - Solving a 1D, 2D or 3D Poisson Problem in Parallel</h1> // // This is the fourth example program. It builds on // the third example program by showing how to formulate // the code in a dimension-independent way. Very minor // changes to the example will allow the problem to be // solved in one, two or three dimensions. // // This example will also introduce the PerfLog class // as a way to monitor your code's performance. We will // use it to instrument the matrix assembly code and look // for bottlenecks where we should focus optimization efforts. // // This example also shows how to extend example 3 to run in // parallel. Notice how litte has changed! The significant // differences are marked with "PARALLEL CHANGE".// C++ include files that we need#include <iostream>#include <algorithm>#include <math.h>// Basic include file needed for the mesh functionality.#include "libmesh.h"#include "mesh.h"#include "mesh_generation.h"#include "gmv_io.h"#include "gnuplot_io.h"#include "linear_implicit_system.h"#include "equation_systems.h"// Define the Finite Element object.#include "fe.h"// Define Gauss quadrature rules.#include "quadrature_gauss.h"// Define the DofMap, which handles degree of freedom// indexing.#include "dof_map.h"// Define useful datatypes for finite element// matrix and vector components.#include "sparse_matrix.h"#include "numeric_vector.h"#include "dense_matrix.h"#include "dense_vector.h"// Define the PerfLog, a performance logging utility.// It is useful for timing events in a code and giving// you an idea where bottlenecks lie.#include "perf_log.h"// The definition of a geometric element#include "elem.h"#include "string_to_enum.h"#include "getpot.h"// Function prototype. This is the function that will assemble// the linear system for our Poisson problem. Note that the// function will take the \p EquationSystems object and the// name of the system we are assembling as input. From the// \p EquationSystems object we have acess to the \p Mesh and// other objects we might need.void assemble_poisson(EquationSystems& es, const std::string& system_name);// Exact solution function prototype.Real exact_solution (const Real x, const Real y = 0., const Real z = 0.);// Begin the main program.int main (int argc, char** argv){ // Initialize libMesh and any dependent libaries, like in example 2. LibMeshInit init (argc, argv); // Declare a performance log for the main program // PerfLog perf_main("Main Program"); // Create a GetPot object to parse the command line GetPot command_line (argc, argv); // Check for proper calling arguments. if (argc < 3) { if (libMesh::processor_id() == 0) std::cerr << "Usage:\n" <<"\t " << argv[0] << " -d 2(3)" << " -n 15" << std::endl; // This handy function will print the file name, line number, // and then abort. Currrently the library does not use C++ // exception handling. libmesh_error(); } // Brief message to the user regarding the program name // and command line arguments. else { std::cout << "Running " << argv[0]; for (int i=1; i<argc; i++) std::cout << " " << argv[i]; std::cout << std::endl << std::endl; } // Read problem dimension from command line. Use int // instead of unsigned since the GetPot overload is ambiguous // otherwise. int dim = 2; if ( command_line.search(1, "-d") ) dim = command_line.next(dim); // Read number of elements from command line int ps = 15; if ( command_line.search(1, "-n") ) ps = command_line.next(ps); // Read FE order from command line std::string order = "SECOND"; if ( command_line.search(2, "-Order", "-o") ) order = command_line.next(order); // Read FE Family from command line std::string family = "LAGRANGE"; if ( command_line.search(2, "-FEFamily", "-f") ) family = command_line.next(family); // Cannot use dicontinuous basis. if ((family == "MONOMIAL") || (family == "XYZ")) { std::cout << "ex4 currently requires a C^0 (or higher) FE basis." << std::endl; libmesh_error(); } // Create a mesh with user-defined dimension. Mesh mesh (dim); // Use the MeshTools::Generation mesh generator to create a uniform // grid on the square [-1,1]^D. We instruct the mesh generator // to build a mesh of 8x8 \p Quad9 elements in 2D, or \p Hex27 // elements in 3D. Building these higher-order elements allows // us to use higher-order approximation, as in example 3. if ((family == "LAGRANGE") && (order == "FIRST")) { // No reason to use high-order geometric elements if we are // solving with low-order finite elements. MeshTools::Generation::build_cube (mesh, ps, ps, ps, -1., 1., -1., 1., -1., 1., (dim==1) ? EDGE2 : ((dim == 2) ? QUAD4 : HEX8)); } else { MeshTools::Generation::build_cube (mesh, ps, ps, ps, -1., 1., -1., 1., -1., 1., (dim==1) ? EDGE3 : ((dim == 2) ? QUAD9 : HEX27)); } // Print information about the mesh to the screen. mesh.print_info(); // Create an equation systems object. EquationSystems equation_systems (mesh); // Declare the system and its variables. // Create a system named "Poisson" LinearImplicitSystem& system = equation_systems.add_system<LinearImplicitSystem> ("Poisson"); // Add the variable "u" to "Poisson". "u" // will be approximated using second-order approximation. system.add_variable("u", Utility::string_to_enum<Order> (order), Utility::string_to_enum<FEFamily>(family)); // Give the system a pointer to the matrix assembly // function. system.attach_assemble_function (assemble_poisson); // Initialize the data structures for the equation system. equation_systems.init(); // Print information about the system to the screen. equation_systems.print_info(); mesh.print_info(); // Solve the system "Poisson", just like example 2. equation_systems.get_system("Poisson").solve(); // After solving the system write the solution // to a GMV-formatted plot file. if(dim == 1) { GnuPlotIO plot(mesh,"Example 4, 1D",GnuPlotIO::GRID_ON); plot.write_equation_systems("out_1",equation_systems); } else { GMVIO (mesh).write_equation_systems ((dim == 3) ? "out_3.gmv" : "out_2.gmv",equation_systems); } // All done. return 0;}//////// We now define the matrix assembly function for the// Poisson system. We need to first compute element// matrices and right-hand sides, and then take into// account the boundary conditions, which will be handled// via a penalty method.void assemble_poisson(EquationSystems& es, const std::string& system_name){ // It is a good idea to make sure we are assembling // the proper system. libmesh_assert (system_name == "Poisson"); // Declare a performance log. Give it a descriptive // string to identify what part of the code we are // logging, since there may be many PerfLogs in an // application. PerfLog perf_log ("Matrix Assembly"); // Get a constant reference to the mesh object. const MeshBase& mesh = es.get_mesh(); // The dimension that we are running const unsigned int dim = mesh.mesh_dimension(); // Get a reference to the LinearImplicitSystem we are solving LinearImplicitSystem& system = es.get_system<LinearImplicitSystem>("Poisson"); // A reference to the \p DofMap object for this system. The \p DofMap // object handles the index translation from node and element numbers // to degree of freedom numbers. We will talk more about the \p DofMap
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -