?? ex3.c
字號:
// properties at the quadrature points. const std::vector<Point>& q_point = fe->get_xyz(); // The element shape functions evaluated at the quadrature points. const std::vector<std::vector<Real> >& phi = fe->get_phi(); // The element shape function gradients evaluated at the quadrature // points. const std::vector<std::vector<RealGradient> >& dphi = fe->get_dphi(); // Define data structures to contain the element matrix // and right-hand-side vector contribution. Following // basic finite element terminology we will denote these // "Ke" and "Fe". These datatypes are templated on // Number, which allows the same code to work for real // or complex numbers. DenseMatrix<Number> Ke; DenseVector<Number> Fe; // This vector will hold the degree of freedom indices for // the element. These define where in the global system // the element degrees of freedom get mapped. std::vector<unsigned int> dof_indices; // Now we will loop over all the elements in the mesh. // We will compute the element matrix and right-hand-side // contribution. // // Element iterators are a nice way to iterate through // all the elements, or all the elements that have some property. // There are many types of element iterators, but here we will // use the most basic type, the const_elem_iterator. The iterator // el will iterate from the first to the last element. The // iterator end_el tells us when to stop. It is smart to make // this one const so that we don't accidentally mess it up!// const_elem_iterator el (mesh.elements_begin());// const const_elem_iterator end_el (mesh.elements_end()); MeshBase::const_element_iterator el = mesh.elements_begin(); const MeshBase::const_element_iterator end_el = mesh.elements_end(); // Loop over the elements. Note that ++el is preferred to // el++ since the latter requires an unnecessary temporary // object. for ( ; el != end_el ; ++el) { // Store a pointer to the element we are currently // working on. This allows for nicer syntax later. const Elem* elem = *el; // Get the degree of freedom indices for the // current element. These define where in the global // matrix and right-hand-side this element will // contribute to. dof_map.dof_indices (elem, dof_indices); // Compute the element-specific data for the current // element. This involves computing the location of the // quadrature points (q_point) and the shape functions // (phi, dphi) for the current element. fe->reinit (elem); // Zero the element matrix and right-hand side before // summing them. We use the resize member here because // the number of degrees of freedom might have changed from // the last element. Note that this will be the case if the // element type is different (i.e. the last element was a // triangle, now we are on a quadrilateral). // The DenseMatrix::resize() and the DenseVector::resize() // members will automatically zero out the matrix and vector. Ke.resize (dof_indices.size(), dof_indices.size()); Fe.resize (dof_indices.size()); // Now loop over the quadrature points. This handles // the numeric integration. for (unsigned int qp=0; qp<qrule.n_points(); qp++) { // Now we will build the element matrix. This involves // a double loop to integrate the test funcions (i) against // the trial functions (j). for (unsigned int i=0; i<phi.size(); i++) for (unsigned int j=0; j<phi.size(); j++) { Ke(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]); } // This is the end of the matrix summation loop // Now we build the element right-hand-side contribution. // This involves a single loop in which we integrate the // "forcing function" in the PDE against the test functions. { const Real x = q_point[qp](0); const Real y = q_point[qp](1); const Real eps = 1.e-3; // "fxy" is the forcing function for the Poisson equation. // In this case we set fxy to be a finite difference // Laplacian approximation to the (known) exact solution. // // We will use the second-order accurate FD Laplacian // approximation, which in 2D is // // u_xx + u_yy = (u(i,j-1) + u(i,j+1) + // u(i-1,j) + u(i+1,j) + // -4*u(i,j))/h^2 // // Since the value of the forcing function depends only // on the location of the quadrature point (q_point[qp]) // we will compute it here, outside of the i-loop const Real fxy = -(exact_solution(x,y-eps) + exact_solution(x,y+eps) + exact_solution(x-eps,y) + exact_solution(x+eps,y) - 4.*exact_solution(x,y))/eps/eps; for (unsigned int i=0; i<phi.size(); i++) Fe(i) += JxW[qp]*fxy*phi[i][qp]; } } // We have now reached the end of the RHS summation, // and the end of quadrature point loop, so // the interior element integration has // been completed. However, we have not yet addressed // boundary conditions. For this example we will only // consider simple Dirichlet boundary conditions. // // There are several ways Dirichlet boundary conditions // can be imposed. A simple approach, which works for // interpolary bases like the standard Lagrange polynomials, // is to assign function values to the // degrees of freedom living on the domain boundary. This // works well for interpolary bases, but is more difficult // when non-interpolary (e.g Legendre or Hierarchic) bases // are used. // // Dirichlet boundary conditions can also be imposed with a // "penalty" method. In this case essentially the L2 projection // of the boundary values are added to the matrix. The // projection is multiplied by some large factor so that, in // floating point arithmetic, the existing (smaller) entries // in the matrix and right-hand-side are effectively ignored. // // This amounts to adding a term of the form (in latex notation) // // \frac{1}{\epsilon} \int_{\delta \Omega} \phi_i \phi_j = \frac{1}{\epsilon} \int_{\delta \Omega} u \phi_i // // where // // \frac{1}{\epsilon} is the penalty parameter, defined such that \epsilon << 1 { // The following loop is over the sides of the element. // If the element has no neighbor on a side then that // side MUST live on a boundary of the domain. for (unsigned int side=0; side<elem->n_sides(); side++) if (elem->neighbor(side) == NULL) { // The value of the shape functions at the quadrature // points. const std::vector<std::vector<Real> >& phi_face = fe_face->get_phi(); // The Jacobian * Quadrature Weight at the quadrature // points on the face. const std::vector<Real>& JxW_face = fe_face->get_JxW(); // The XYZ locations (in physical space) of the // quadrature points on the face. This is where // we will interpolate the boundary value function. const std::vector<Point >& qface_point = fe_face->get_xyz(); // Compute the shape function values on the element // face. fe_face->reinit(elem, side); // Loop over the face quadrature points for integration. for (unsigned int qp=0; qp<qface.n_points(); qp++) { // The location on the boundary of the current // face quadrature point. const Real xf = qface_point[qp](0); const Real yf = qface_point[qp](1); // The penalty value. \frac{1}{\epsilon} // in the discussion above. const Real penalty = 1.e10; // The boundary value. const Real value = exact_solution(xf, yf); // Matrix contribution of the L2 projection. for (unsigned int i=0; i<phi_face.size(); i++) for (unsigned int j=0; j<phi_face.size(); j++) Ke(i,j) += JxW_face[qp]*penalty*phi_face[i][qp]*phi_face[j][qp]; // Right-hand-side contribution of the L2 // projection. for (unsigned int i=0; i<phi_face.size(); i++) Fe(i) += JxW_face[qp]*penalty*value*phi_face[i][qp]; } } } // We have now finished the quadrature point loop, // and have therefore applied all the boundary conditions. // // The element matrix and right-hand-side are now built // for this element. Add them to the global matrix and // right-hand-side vector. The SparseMatrix::add_matrix() // and NumericVector::add_vector() members do this for us. system.matrix->add_matrix (Ke, dof_indices); system.rhs->add_vector (Fe, dof_indices); } // All done!}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -