亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? naviersystem.c

?? 一個用來實現偏微分方程中網格的計算庫
?? C
?? 第 1 頁 / 共 2 頁
字號:
/* $Id: naviersystem.C 2790 2008-04-13 16:43:55Z roystgnr $ *//* The Next Great Finite Element Library. *//* Copyright (C) 2003  Benjamin S. Kirk *//* This library is free software; you can redistribute it and/or *//* modify it under the terms of the GNU Lesser General Public *//* License as published by the Free Software Foundation; either *//* version 2.1 of the License, or (at your option) any later version. *//* This library is distributed in the hope that it will be useful, *//* but WITHOUT ANY WARRANTY; without even the implied warranty of *//* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU *//* Lesser General Public License for more details. *//* You should have received a copy of the GNU Lesser General Public *//* License along with this library; if not, write to the Free Software *//* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */#include "getpot.h"#include "naviersystem.h"#include "boundary_info.h"#include "fe_base.h"#include "fe_interface.h"#include "mesh.h"#include "quadrature.h"void NavierSystem::init_data (){  const unsigned int dim = this->get_mesh().mesh_dimension();  // Add the pressure variable "p". This will  // be approximated with a first-order basis,  // providing an LBB-stable pressure-velocity pair.  // Add the velocity components "u" & "v".  They  // will be approximated using second-order approximation.  this->add_variable ("u", SECOND);  u_var = 0;  this->add_variable ("v", SECOND);  v_var = 1;  if (dim == 3)    {      this->add_variable ("w", SECOND);      w_var = 2;      p_var = 3;    }  else    {      w_var = u_var;      p_var = 2;    }  this->add_variable ("p", FIRST);  // Do the parent's initialization after variables are defined  FEMSystem::init_data();  // Tell the system to march velocity forward in time, but   // leave p as a constraint only  this->time_evolving(u_var);  this->time_evolving(v_var);  if (dim == 3)    this->time_evolving(w_var);  // Get references to the finite elements we need  fe_velocity = element_fe[this->variable_type(u_var)];  fe_pressure = element_fe[this->variable_type(p_var)];  fe_side_vel = side_fe[this->variable_type(u_var)];  // To enable FE optimizations, we should prerequest all the data  // we will need to build the linear system.  fe_velocity->get_JxW();  fe_velocity->get_phi();  fe_velocity->get_dphi();  fe_velocity->get_xyz();    fe_pressure->get_phi();  fe_side_vel->get_JxW();  fe_side_vel->get_phi();  // Check the input file for Reynolds number  GetPot infile("navier.in");  Reynolds = infile("Reynolds", 1.);  application = infile("application", 0);  // Useful debugging options  // Set verify_analytic_jacobians to 1e-6 to use  this->verify_analytic_jacobians = infile("verify_analytic_jacobians", 0);  this->print_jacobians = infile("print_jacobians", false);  this->print_element_jacobians = infile("print_element_jacobians", false);}bool NavierSystem::element_time_derivative (bool request_jacobian){  // First we get some references to cell-specific data that  // will be used to assemble the linear system.  // Element Jacobian * quadrature weights for interior integration  const std::vector<Real> &JxW = fe_velocity->get_JxW();  // The velocity shape functions at interior quadrature points.  const std::vector<std::vector<Real> >& phi = fe_velocity->get_phi();  // The velocity shape function gradients at interior  // quadrature points.  const std::vector<std::vector<RealGradient> >& dphi =    fe_velocity->get_dphi();  // The pressure shape functions at interior  // quadrature points.  const std::vector<std::vector<Real> >& psi = fe_pressure->get_phi();  // Physical location of the quadrature points  const std::vector<Point>& qpoint = fe_velocity->get_xyz();   // The number of local degrees of freedom in each variable  const unsigned int n_p_dofs = dof_indices_var[p_var].size();  const unsigned int n_u_dofs = dof_indices_var[u_var].size();   libmesh_assert (n_u_dofs == dof_indices_var[v_var].size());   // The subvectors and submatrices we need to fill:  const unsigned int dim = this->get_mesh().mesh_dimension();  DenseSubMatrix<Number> &Kuu = *elem_subjacobians[u_var][u_var];  DenseSubMatrix<Number> &Kvv = *elem_subjacobians[v_var][v_var];  DenseSubMatrix<Number> &Kww = *elem_subjacobians[w_var][w_var];  DenseSubMatrix<Number> &Kuv = *elem_subjacobians[u_var][v_var];  DenseSubMatrix<Number> &Kuw = *elem_subjacobians[u_var][w_var];  DenseSubMatrix<Number> &Kvu = *elem_subjacobians[v_var][u_var];  DenseSubMatrix<Number> &Kvw = *elem_subjacobians[v_var][w_var];  DenseSubMatrix<Number> &Kwu = *elem_subjacobians[w_var][u_var];  DenseSubMatrix<Number> &Kwv = *elem_subjacobians[w_var][v_var];  DenseSubMatrix<Number> &Kup = *elem_subjacobians[u_var][p_var];  DenseSubMatrix<Number> &Kvp = *elem_subjacobians[v_var][p_var];  DenseSubMatrix<Number> &Kwp = *elem_subjacobians[w_var][p_var];  DenseSubVector<Number> &Fu = *elem_subresiduals[u_var];  DenseSubVector<Number> &Fv = *elem_subresiduals[v_var];  DenseSubVector<Number> &Fw = *elem_subresiduals[w_var];        // Now we will build the element Jacobian and residual.  // Constructing the residual requires the solution and its  // gradient from the previous timestep.  This must be  // calculated at each quadrature point by summing the  // solution degree-of-freedom values by the appropriate  // weight functions.  unsigned int n_qpoints = element_qrule->n_points();  for (unsigned int qp=0; qp != n_qpoints; qp++)    {      // Compute the solution & its gradient at the old Newton iterate      Number p = interior_value(p_var, qp),             u = interior_value(u_var, qp),             v = interior_value(v_var, qp),             w = interior_value(w_var, qp);      Gradient grad_u = interior_gradient(u_var, qp),               grad_v = interior_gradient(v_var, qp),               grad_w = interior_gradient(w_var, qp);      // Definitions for convenience.  It is sometimes simpler to do a      // dot product if you have the full vector at your disposal.      NumberVectorValue U     (u,     v);      if (dim == 3)        U(2) = w;      const Number  u_x = grad_u(0);      const Number  u_y = grad_u(1);      const Number  u_z = (dim == 3)?grad_u(2):0;      const Number  v_x = grad_v(0);      const Number  v_y = grad_v(1);      const Number  v_z = (dim == 3)?grad_v(2):0;      const Number  w_x = (dim == 3)?grad_w(0):0;      const Number  w_y = (dim == 3)?grad_w(1):0;      const Number  w_z = (dim == 3)?grad_w(2):0;      // Value of the forcing function at this quadrature point      Point f = this->forcing(qpoint[qp]);      // First, an i-loop over the velocity degrees of freedom.      // We know that n_u_dofs == n_v_dofs so we can compute contributions      // for both at the same time.      for (unsigned int i=0; i != n_u_dofs; i++)        {          Fu(i) += JxW[qp] *                   (-Reynolds*(U*grad_u)*phi[i][qp] + // convection term                    p*dphi[i][qp](0) -                // pressure term		    (grad_u*dphi[i][qp]) +            // diffusion term		    f(0)*phi[i][qp]                   // forcing function		    );                      Fv(i) += JxW[qp] *                   (-Reynolds*(U*grad_v)*phi[i][qp] + // convection term                    p*dphi[i][qp](1) -                // pressure term		    (grad_v*dphi[i][qp]) +            // diffusion term		    f(1)*phi[i][qp]                   // forcing function		    );          if (dim == 3)          Fw(i) += JxW[qp] *                   (-Reynolds*(U*grad_w)*phi[i][qp] + // convection term                    p*dphi[i][qp](2) -                // pressure term		    (grad_w*dphi[i][qp]) +            // diffusion term		    f(2)*phi[i][qp]                   // forcing function		    );          // Note that the Fp block is identically zero unless we are using          // some kind of artificial compressibility scheme...          // Matrix contributions for the uu and vv couplings.          if (request_jacobian)            for (unsigned int j=0; j != n_u_dofs; j++)              {                Kuu(i,j) += JxW[qp] * /* convection term */      (-Reynolds*(U*dphi[j][qp])*phi[i][qp] - /* diffusion term  */       (dphi[i][qp]*dphi[j][qp]) - /* Newton term     */       Reynolds*u_x*phi[i][qp]*phi[j][qp]);                Kuv(i,j) += JxW[qp] * /* Newton term     */      -Reynolds*u_y*phi[i][qp]*phi[j][qp];                Kvv(i,j) += JxW[qp] * /* convection term */      (-Reynolds*(U*dphi[j][qp])*phi[i][qp] - /* diffusion term  */       (dphi[i][qp]*dphi[j][qp]) - /* Newton term     */       Reynolds*v_y*phi[i][qp]*phi[j][qp]);                Kvu(i,j) += JxW[qp] *  /* Newton term     */      -Reynolds*v_x*phi[i][qp]*phi[j][qp];                if (dim == 3)                  {                    Kww(i,j) += JxW[qp] * /* convection term */          (-Reynolds*(U*dphi[j][qp])*phi[i][qp] - /* diffusion term  */           (dphi[i][qp]*dphi[j][qp]) - /* Newton term     */           Reynolds*w_z*phi[i][qp]*phi[j][qp]);                    Kuw(i,j) += JxW[qp] * /* Newton term     */      -Reynolds*u_z*phi[i][qp]*phi[j][qp];                    Kvw(i,j) += JxW[qp] * /* Newton term     */      -Reynolds*v_z*phi[i][qp]*phi[j][qp];                    Kwu(i,j) += JxW[qp] * /* Newton term     */      -Reynolds*w_x*phi[i][qp]*phi[j][qp];                    Kwv(i,j) += JxW[qp] * /* Newton term     */      -Reynolds*w_y*phi[i][qp]*phi[j][qp];                  }              }          // Matrix contributions for the up and vp couplings.          if (request_jacobian)            for (unsigned int j=0; j != n_p_dofs; j++)              {                Kup(i,j) += JxW[qp]*psi[j][qp]*dphi[i][qp](0);                Kvp(i,j) += JxW[qp]*psi[j][qp]*dphi[i][qp](1);                if (dim == 3)                  Kwp(i,j) += JxW[qp]*psi[j][qp]*dphi[i][qp](2);              }        }    } // end of the quadrature point qp-loop    return request_jacobian;}bool NavierSystem::element_constraint (bool request_jacobian){  // Here we define some references to cell-specific data that  // will be used to assemble the linear system.  // Element Jacobian * quadrature weight for interior integration  const std::vector<Real> &JxW = fe_velocity->get_JxW();  // The velocity shape function gradients at interior  // quadrature points.  const std::vector<std::vector<RealGradient> >& dphi =    fe_velocity->get_dphi();  // The pressure shape functions at interior  // quadrature points.  const std::vector<std::vector<Real> >& psi = fe_pressure->get_phi();  // The number of local degrees of freedom in each variable  const unsigned int n_u_dofs = dof_indices_var[u_var].size();  const unsigned int n_p_dofs = dof_indices_var[p_var].size();  // The subvectors and submatrices we need to fill:  const unsigned int dim = this->get_mesh().mesh_dimension();

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品国产电影一区二区| 在线播放一区二区三区| 美女视频黄久久| 亚洲.国产.中文慕字在线| 亚洲日本护士毛茸茸| 国产精品久久久久久久久免费丝袜 | 久久综合久久鬼色中文字| 欧美日韩精品系列| 欧美在线看片a免费观看| 在线亚洲免费视频| 欧美日韩精品一区视频| 欧美夫妻性生活| 亚洲精品一区二区三区精华液| 精品日韩在线观看| 国产日韩欧美麻豆| 国产精品国产三级国产普通话三级| 国产清纯白嫩初高生在线观看91| 久久人人超碰精品| 国产精品理论片| 国产精品性做久久久久久| 免费看日韩a级影片| 激情文学综合丁香| hitomi一区二区三区精品| 色94色欧美sute亚洲线路一久 | 欧美制服丝袜第一页| 欧美视频中文一区二区三区在线观看| 91色porny在线视频| 欧美日韩一区二区三区视频| 欧美日韩你懂的| 久久综合中文字幕| 亚洲欧美偷拍卡通变态| 午夜精品久久久久久不卡8050| 老司机精品视频线观看86| 成人久久久精品乱码一区二区三区| 99久久er热在这里只有精品66| 欧美手机在线视频| 国产农村妇女精品| 石原莉奈在线亚洲三区| 成人丝袜高跟foot| 精品噜噜噜噜久久久久久久久试看 | 天堂午夜影视日韩欧美一区二区| 激情小说亚洲一区| 日韩免费一区二区| 中文字幕一区三区| 久草中文综合在线| 在线看日本不卡| 国产亚洲精品久| 免费在线视频一区| 欧美四级电影网| 亚洲国产精品高清| 精品一区二区三区不卡| 欧美人体做爰大胆视频| 中文字幕视频一区| 国产成人av一区二区三区在线 | 夜夜嗨av一区二区三区中文字幕| 精品制服美女久久| 欧美日韩一二三| 日韩美女啊v在线免费观看| 国内精品嫩模私拍在线| 欧美精品日韩一区| 夜色激情一区二区| 91免费看片在线观看| 国产欧美日韩在线| 久久99久久99| 欧美一区中文字幕| 日韩激情中文字幕| 欧美日韩免费观看一区二区三区| 国产精品国产成人国产三级| 国产精品资源在线看| 精品粉嫩超白一线天av| 美脚の诱脚舐め脚责91 | 国产麻豆欧美日韩一区| 精品国产精品网麻豆系列| 日本亚洲最大的色成网站www| 欧美日韩激情一区二区| 亚洲国产欧美日韩另类综合| 色婷婷综合久久久久中文一区二区 | 欧美激情一区二区三区蜜桃视频| 精品一区二区三区香蕉蜜桃| 精品日韩欧美在线| 色一情一伦一子一伦一区| 亚洲色图欧美在线| 欧美亚洲一区二区三区四区| 亚洲一区二区在线免费看| 在线观看一区日韩| 丝袜a∨在线一区二区三区不卡 | 男人的天堂久久精品| 日韩欧美亚洲一区二区| 国产乱一区二区| 国产三级一区二区| www.欧美色图| 亚洲国产欧美在线人成| 日韩一区二区三区在线| 国产精品自在欧美一区| 国产精品久久一级| 欧美日韩一区二区三区高清 | 欧美精彩视频一区二区三区| 国产v综合v亚洲欧| 亚洲一区二区在线免费看| 日韩一本二本av| 成人97人人超碰人人99| 亚洲午夜精品在线| 亚洲精品一线二线三线| 一本大道久久精品懂色aⅴ| 亚洲国产精品精华液网站| 欧美videossexotv100| 成人av在线网站| 日韩精品国产精品| 国产日韩欧美综合在线| 欧美日韩综合色| 国产精品亚洲第一区在线暖暖韩国| 亚洲丝袜精品丝袜在线| 日韩精品在线网站| 一本大道久久a久久综合| 麻豆freexxxx性91精品| 亚洲欧美乱综合| 精品国一区二区三区| 91久久久免费一区二区| 玖玖九九国产精品| 一区二区三区四区不卡视频| 久久久久国产精品麻豆ai换脸| 在线这里只有精品| 国产成人精品网址| 蜜臀久久99精品久久久久宅男| 国产精品久久久久久久久免费相片| 日韩一区二区精品| 日本韩国欧美国产| 成人性生交大片免费看在线播放| 日本伊人午夜精品| 亚洲午夜激情av| 综合久久久久久| 久久久久99精品国产片| 日韩一区二区不卡| 欧美美女视频在线观看| 色伊人久久综合中文字幕| 国产精品一区二区在线播放| 日韩电影网1区2区| 亚洲第一福利一区| 亚洲欧美影音先锋| 国产欧美日韩在线观看| 久久婷婷久久一区二区三区| 日韩一区二区在线观看视频播放| 在线观看91精品国产入口| 9i在线看片成人免费| 国产精品一区二区久久精品爱涩| av爱爱亚洲一区| 国产激情视频一区二区三区欧美| 蜜桃视频第一区免费观看| 亚洲大片免费看| 亚洲一级不卡视频| 亚洲高清免费观看高清完整版在线观看| 中文字幕一区不卡| 1000精品久久久久久久久| 亚洲欧洲一区二区在线播放| 国产精品久久久久久久久免费桃花| 国产欧美视频在线观看| 国产精品欧美一区二区三区| 久久精品人人做人人爽人人| 欧美极品另类videosde| 1024成人网色www| 亚洲色图视频网| 五月婷婷激情综合| 日本一不卡视频| 国产精品一区专区| 成人午夜免费av| 在线看不卡av| 日韩一区二区免费高清| 欧美电影免费观看高清完整版在线观看 | 国产网红主播福利一区二区| 欧美激情一区二区三区蜜桃视频| 中文字幕在线不卡一区| 亚洲影视在线观看| 美日韩一区二区| 风间由美一区二区三区在线观看 | 日韩精品在线网站| 欧美国产精品专区| 亚洲美腿欧美偷拍| 日韩精品一卡二卡三卡四卡无卡 | 国产午夜久久久久| 亚洲人成精品久久久久久| 亚洲二区在线视频| 狠狠色丁香婷综合久久| 国产夫妻精品视频| 色综合天天在线| 91精品国产aⅴ一区二区| 久久免费电影网| 一区二区三区av电影| 久久99久久久欧美国产| 91在线播放网址| 日韩欧美一区二区在线视频| 国产精品网友自拍| 日韩精品高清不卡| 成人app网站| 亚洲精品在线三区| 亚洲高清一区二区三区| 成人一区二区三区中文字幕| 欧美午夜精品理论片a级按摩| 久久综合久久综合九色| 天天做天天摸天天爽国产一区| 懂色av一区二区三区蜜臀|