亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? haarcascade_lowerbody.xml

?? webcmaface人臉識別jar版,自帶運行環境。
?? XML
?? 第 1 頁 / 共 5 頁
字號:
<?xml version="1.0"?>
<!--
   19x23 lowerbody detector (see the detailed description below). 

//////////////////////////////////////////////////////////////////////////
| Contributors License Agreement
| IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|   By downloading, copying, installing or using the software you agree 
|   to this license.
|   If you do not agree to this license, do not download, install,
|   copy or use the software.
|
| Copyright (c) 2004, Hannes Kruppa and Bernt Schiele (ETH Zurich, Switzerland).
|  All rights reserved.
|
| Redistribution and use in source and binary forms, with or without
| modification, are permitted provided that the following conditions are
| met:
|
|    * Redistributions of source code must retain the above copyright
|       notice, this list of conditions and the following disclaimer.
|    * Redistributions in binary form must reproduce the above
|      copyright notice, this list of conditions and the following
|      disclaimer in the documentation and/or other materials provided
|      with the distribution.  
|    * The name of Contributor may not used to endorse or promote products 
|      derived from this software without specific prior written permission.
|
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
| CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  Back to
| Top
//////////////////////////////////////////////////////////////////////////

"Haar"-based Detectors For Pedestrian Detection
===============================================
by Hannes Kruppa and Bernt Schiele, ETH Zurich, Switzerland

This archive provides the following three detectors:
- upper body detector (most fun, useful in many scenarios!)
- lower body detector
- full body detector

These detectors have been successfully applied to pedestrian detection
in still images. They can be directly passed as parameters to the
program HaarFaceDetect.
NOTE: These detectors deal with frontal and backside views but not
with side views (also see "Known limitations" below).

RESEARCHERS:
If you are using any of the detectors or involved ideas please cite
this paper (available at www.vision.ethz.ch/publications/):

@InProceedings{Kruppa03-bmvc,
  author =       "Hannes Kruppa, Modesto Castrillon-Santana and Bernt Schiele",
  title =        "Fast and Robust Face Finding via Local Context."
  booktitle =    "Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance"
  year =         "2003",
  month =        "October"
}

COMMERCIAL:
If you have any commercial interest in this work please contact 
hkruppa@inf.ethz.ch


ADDITIONAL INFORMATION 
====================== 
Check out the demo movie, e.g. using mplayer or any (Windows/Linux-) player
that can play back .mpg movies.
Under Linux that's:
> ffplay demo.mpg
or:
> mplayer demo.mpg

The movie shows a person walking towards the camera in a realistic
indoor setting. Using ffplay or mplayer you can pause and continue the
movie by pressing the space bar.

Detections coming from the different detectors are visualized using
different line styles: 
upper body : dotted line
lower body : dashed line
full body  : solid line

You will notice that successful detections containing the target do
not sit tightly on the body but also include some of the background
left and right.  This is not a bug but accurately reflects the
employed training data which also includes portions of the background
to ensure proper silhouette representation. If you want to get a
feeling for the training data check out the CBCL data set:
http://www.ai.mit.edu/projects/cbcl/software-datasets/PedestrianData.html

There is also a small number of false alarms in this sequence.  
NOTE: This is per frame detection, not tracking (which is also one of
the reasons why it is not mislead by the person's shadow on the back
wall). 

On an Intel Xeon 1.7GHz machine the detectors operate at something
between 6Hz to 14 Hz (on 352 x 288 frames per second) depending on the
detector. The detectors work as well on much lower image resolutions
which is always an interesting possibility for speed-ups or
"coarse-to-fine" search strategies.

Additional information e.g. on training parameters, detector
combination, detecting other types of objects (e.g. cars) etc. is
available in my PhD thesis report (available end of June). Check out
www.vision.ethz.ch/kruppa/


KNOWN LIMITATIONS
==================
1) the detectors only support frontal and back views but not sideviews.
   Sideviews are trickier and it makes a lot of sense to include additional
   modalities for their detection, e.g. motion information. I recommend
   Viola and Jones' ICCV 2003 paper if this further interests you.

2) dont expect these detectors to be as accurate as a frontal face detector.
   A frontal face as a pattern is pretty distinct with respect to other
   patterns occuring in the world (i.e. image "background"). This is not so
   for upper, lower and especially full bodies, because they have to rely
   on fragile silhouette information rather than internal (facial) features.
   Still, we found especially the upper body detector to perform amazingly well.
   In contrast to a face detector these detectors will also work at very low
   image resolutions 

Acknowledgements
================
Thanks to Martin Spengler, ETH Zurich, for providing the demo movie.
-->
<opencv_storage>
<haarcascade_lowerbody type_id="opencv-haar-classifier">
  <size>19 23</size>
  <stages>
    <_>
      <!-- stage 0 -->
      <trees>
        <_>
          <!-- tree 0 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>3 4 12 16 -1.</_>
                <_>7 4 4 16 3.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>-0.0168698690831661</threshold>
            <left_val>0.5465741753578186</left_val>
            <right_val>-0.6367803812026978</right_val></_></_>
        <_>
          <!-- tree 1 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>11 0 2 20 -1.</_>
                <_>11 10 2 10 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>2.5349899660795927e-003</threshold>
            <left_val>-0.3760549128055573</left_val>
            <right_val>0.3237810134887695</right_val></_></_>
        <_>
          <!-- tree 2 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>4 1 4 22 -1.</_>
                <_>4 12 4 11 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>-0.0247094593942165</threshold>
            <left_val>-0.6797912716865540</left_val>
            <right_val>0.2050105929374695</right_val></_></_>
        <_>
          <!-- tree 3 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>9 8 7 12 -1.</_>
                <_>9 14 7 6 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>0.0824368596076965</threshold>
            <left_val>0.2058863937854767</left_val>
            <right_val>-0.8493843078613281</right_val></_></_>
        <_>
          <!-- tree 4 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>6 0 6 10 -1.</_>
                <_>6 0 3 5 2.</_>
                <_>9 5 3 5 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>-8.2128931535407901e-004</threshold>
            <left_val>0.3189192116260529</left_val>
            <right_val>-0.4646945893764496</right_val></_></_>
        <_>
          <!-- tree 5 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>1 18 18 5 -1.</_>
                <_>1 18 9 5 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>0.0230169594287872</threshold>
            <left_val>0.1867029964923859</left_val>
            <right_val>-0.7033089995384216</right_val></_></_>
        <_>
          <!-- tree 6 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>4 20 10 3 -1.</_>
                <_>9 20 5 3 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>6.6386149264872074e-003</threshold>
            <left_val>0.1637049019336700</left_val>
            <right_val>-0.8460472226142883</right_val></_></_>
        <_>
          <!-- tree 7 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>6 17 10 6 -1.</_>
                <_>6 20 10 3 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>7.6682120561599731e-004</threshold>
            <left_val>-0.3985269069671631</left_val>
            <right_val>0.2311332970857620</right_val></_></_>
        <_>
          <!-- tree 8 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>0 0 4 20 -1.</_>
                <_>0 10 4 10 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>0.1173167973756790</threshold>
            <left_val>0.1044503971934319</left_val>
            <right_val>-0.8851094245910645</right_val></_></_>
        <_>
          <!-- tree 9 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>3 0 16 14 -1.</_>
                <_>3 7 16 7 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>0.0154212303459644</threshold>
            <left_val>-0.2785950899124146</left_val>
            <right_val>0.2892192006111145</right_val></_></_>
        <_>
          <!-- tree 10 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>5 1 4 13 -1.</_>
                <_>7 1 2 13 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>0.0340189486742020</threshold>
            <left_val>-0.1428766995668411</left_val>
            <right_val>0.7780153155326843</right_val></_></_>
        <_>
          <!-- tree 11 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>1 8 18 12 -1.</_>
                <_>10 8 9 6 2.</_>
                <_>1 14 9 6 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>0.0346388705074787</threshold>
            <left_val>0.1864407956600189</left_val>
            <right_val>-0.6032484173774719</right_val></_></_>
        <_>
          <!-- tree 12 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>2 0 15 21 -1.</_>
                <_>7 0 5 21 3.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>-0.3750365972518921</threshold>
            <left_val>0.9278184175491333</left_val>
            <right_val>-0.1542160063982010</right_val></_></_>
        <_>
          <!-- tree 13 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>1 5 18 18 -1.</_>
                <_>10 5 9 9 2.</_>
                <_>1 14 9 9 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>-0.0560119710862637</threshold>
            <left_val>-0.5859106779098511</left_val>
            <right_val>0.1954751014709473</right_val></_></_>
        <_>
          <!-- tree 14 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>2 19 15 3 -1.</_>
                <_>7 19 5 3 3.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>-1.4878909569233656e-003</threshold>
            <left_val>0.2813934981822968</left_val>
            <right_val>-0.4185301065444946</right_val></_></_>
        <_>
          <!-- tree 15 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>7 20 12 3 -1.</_>
                <_>7 20 6 3 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>-0.0144956996664405</threshold>
            <left_val>-0.7227396965026856</left_val>
            <right_val>0.0942884609103203</right_val></_></_>
        <_>
          <!-- tree 16 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>1 21 14 2 -1.</_>
                <_>8 21 7 2 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>-5.6178281083703041e-003</threshold>
            <left_val>-0.5955196022987366</left_val>
            <right_val>0.1520265042781830</right_val></_></_></trees>
      <stage_threshold>-1.4308550357818604</stage_threshold>
      <parent>-1</parent>
      <next>-1</next></_>
    <_>
      <!-- stage 1 -->
      <trees>
        <_>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品视频一二三区| 国产ts人妖一区二区| 国精产品一区一区三区mba视频 | 在线免费观看日本一区| 91精品国产一区二区人妖| 久久人人爽爽爽人久久久| 韩国一区二区在线观看| 亚洲色图欧美激情| 亚洲一区二区三区四区中文字幕 | 亚洲丝袜制服诱惑| 免费在线看成人av| 在线精品国精品国产尤物884a| 亚洲精品一区在线观看| 亚洲午夜视频在线观看| 中文字幕一区av| 国产精品1区2区3区在线观看| 91在线丨porny丨国产| 欧美一级欧美一级在线播放| 亚洲卡通动漫在线| 成人精品鲁一区一区二区| 精品少妇一区二区三区在线视频| 亚洲福利国产精品| 色综合久久中文字幕综合网| 亚洲欧美综合在线精品| 欧美日韩精品一区视频| 精品奇米国产一区二区三区| 日韩精品一二三| 91在线观看视频| 日本午夜精品一区二区三区电影 | 美女诱惑一区二区| 欧美一级黄色大片| 欧美xxx久久| 免费欧美在线视频| 欧美电影一区二区| 日韩区在线观看| 高清不卡一区二区在线| 9l国产精品久久久久麻豆| 久久久久亚洲蜜桃| 久久99国产精品尤物| 色噜噜夜夜夜综合网| 国内精品伊人久久久久av一坑 | 久久97超碰色| 日一区二区三区| 日韩国产欧美三级| 蜜臀av性久久久久蜜臀aⅴ四虎| 久久久777精品电影网影网| 91久久一区二区| 91麻豆精品国产91久久久使用方法 | 欧洲av一区二区嗯嗯嗯啊| 欧美系列日韩一区| 日韩av在线免费观看不卡| 欧美日韩激情一区二区三区| 欧美日韩国产成人在线免费| 欧美高清视频不卡网| 日韩中文字幕91| 国产精品久久久久永久免费观看| 99精品久久只有精品| 亚洲人成影院在线观看| 日韩中文字幕不卡| 亚洲国产成人私人影院tom| 亚洲柠檬福利资源导航| 欧美网站一区二区| 久久精品99国产精品| 99天天综合性| 欧美在线观看视频在线| 久久午夜免费电影| 亚洲一级二级三级| 国产福利精品一区| 99re视频精品| 久久久久久亚洲综合影院红桃| 视频一区二区三区中文字幕| 国产成人免费视频一区| 亚洲高清三级视频| 欧美国产综合一区二区| 欧美日韩的一区二区| 粗大黑人巨茎大战欧美成人| 青青草成人在线观看| 亚洲综合网站在线观看| 日韩一区在线免费观看| 欧美精品一区二区蜜臀亚洲| 丝袜美腿一区二区三区| 亚洲一二三级电影| 久久黄色级2电影| 欧美一级理论片| 高清国产一区二区三区| 日韩国产精品久久| 爽好久久久欧美精品| 亚洲一区二区三区四区的 | 精品久久国产字幕高潮| 日本黄色一区二区| av午夜精品一区二区三区| 国产毛片精品一区| 久久精品99国产精品日本| 亚洲一区二区精品视频| 亚洲人成影院在线观看| 亚洲黄网站在线观看| 亚洲欧美国产毛片在线| 亚洲精品乱码久久久久久| 亚洲精品免费在线观看| 一区二区三区电影在线播| 91极品美女在线| 欧美在线啊v一区| 欧美一卡二卡三卡四卡| 欧美成人一级视频| 久久久久久久久久久电影| 国产午夜精品在线观看| 亚洲三级在线看| 三级在线观看一区二区| 国内不卡的二区三区中文字幕| 国产成人精品一区二区三区网站观看| 国产成人免费视频一区| 91久久精品一区二区二区| 日韩欧美国产综合| 亚洲国产高清不卡| 青娱乐精品视频| 色综合久久久久久久久| 精品人在线二区三区| 亚洲三级在线免费观看| 国产一区二区久久| 欧美日韩性生活| 欧美大胆人体bbbb| 91国产成人在线| 91丝袜美腿高跟国产极品老师 | 99久久综合99久久综合网站| 欧美一级xxx| 成人免费视频视频| 国产精品一区二区91| 欧美va在线播放| 欧美午夜精品一区二区蜜桃 | 麻豆精品国产传媒mv男同| 人人超碰91尤物精品国产| 中文字幕av一区二区三区免费看| 在线播放日韩导航| 久久精品免费在线观看| 精品在线观看视频| 久久久久久久久久久久久久久99| 欧美精品久久天天躁| 555www色欧美视频| 精品91自产拍在线观看一区| 久久久久久免费| 最新国产成人在线观看| 午夜精品久久久| 国产中文字幕一区| 成人综合婷婷国产精品久久免费| 2023国产一二三区日本精品2022| 亚洲国产成人av| 欧美探花视频资源| 国产日韩精品一区| 美女一区二区视频| 欧美一级电影网站| 91精品国产综合久久精品| 久久夜色精品国产欧美乱极品| 国产精品全国免费观看高清| 亚洲激情av在线| 久久精品国产99国产| 色综合中文字幕| 日韩欧美激情四射| 亚洲欧美在线高清| 精品一二三四在线| 在线视频你懂得一区二区三区| 精品久久久久av影院| 亚洲一区中文日韩| 国产成人免费在线观看不卡| 欧美精品久久久久久久多人混战| 国产亚洲人成网站| 91精品在线观看入口| 亚洲一线二线三线视频| 成人午夜在线播放| 国产精品资源在线观看| 91精品久久久久久久99蜜桃| 国产精品第四页| 国产99精品在线观看| 日韩精品一区二区三区老鸭窝| 亚洲综合一二三区| 在线观看欧美黄色| 依依成人综合视频| 99久久综合精品| 亚洲欧美日韩中文播放| 在线视频亚洲一区| 狠狠色狠狠色合久久伊人| 激情深爱一区二区| 91精品一区二区三区久久久久久| 综合精品久久久| 成人免费观看av| 久久久www成人免费无遮挡大片| 日韩高清在线电影| 99视频精品全部免费在线| 亚洲日本免费电影| 欧美视频三区在线播放| 五月激情六月综合| 精品日韩一区二区三区 | 国精产品一区一区三区mba视频 | 日韩你懂的在线播放| 精品一区二区三区香蕉蜜桃 | 国产麻豆精品在线| 精品盗摄一区二区三区| 成年人午夜久久久| 亚洲一区二区影院| 尤物av一区二区| 99re这里都是精品|