?? concepts.hpp
字號:
// ======================================// Algebraic concepts with two connectors// ======================================// -----------------// Based on functors// -----------------// More generic, less handy to useauto concept GenericRing<typename AddOp, typename MultOp, typename Element> : AbelianGroup<AddOp, Element>, SemiGroup<MultOp, Element>, algebra::Ring<AddOp, MultOp, Element>{};auto concept GenericCommutativeRing<typename AddOp, typename MultOp, typename Element> : GenericRing<AddOp, MultOp, Element>, CommutativeSemiGroup<MultOp, Element>{};auto concept GenericRingWithIdentity<typename AddOp, typename MultOp, typename Element> : GenericRing<AddOp, MultOp, Element>, Monoid<MultOp, Element>, algebra::RingWithIdentity<AddOp, MultOp, Element>{};auto concept GenericCommutativeRingWithIdentity<typename AddOp, typename MultOp, typename Element> : GenericRingWithIdentity<AddOp, MultOp, Element>, GenericCommutativeRing<AddOp, MultOp, Element>, CommutativeMonoid<MultOp, Element>{};// autoconcept GenericDivisionRing<typename AddOp, typename MultOp, typename Element> : GenericRingWithIdentity<AddOp, MultOp, Element>, algebra::DivisionRing<AddOp, MultOp, Element>{ requires std::Convertible<inverse_result_type, Element>;}; auto concept GenericField<typename AddOp, typename MultOp, typename Element> : GenericDivisionRing<AddOp, MultOp, Element>, GenericCommutativeRingWithIdentity<AddOp, MultOp, Element>, algebra::Field<AddOp, MultOp, Element>{};// ------------------// Based on operators // ------------------// Handier, less generic// Alternative definitions use MultiplicativeMonoid<Element> for Ring// and call such concepts Pseudo-Ringauto concept Ring<typename Element> : AdditiveAbelianGroup<Element>, MultiplicativeSemiGroup<Element>, GenericRing<math::add<Element>, math::mult<Element>, Element>{};auto concept CommutativeRing<typename Element> : Ring<Element>, MultiplicativeCommutativeSemiGroup<Element>, GenericCommutativeRing<math::add<Element>, math::mult<Element>, Element> {};auto concept RingWithIdentity<typename Element> : Ring<Element>, MultiplicativeMonoid<Element>, GenericRingWithIdentity<math::add<Element>, math::mult<Element>, Element>{}; auto concept CommutativeRingWithIdentity<typename Element> : RingWithIdentity<Element>, CommutativeRing<Element>, MultiplicativeCommutativeMonoid<Element>, GenericCommutativeRingWithIdentity<math::add<Element>, math::mult<Element>, Element>{};concept DivisionRing<typename Element> : RingWithIdentity<Element>, MultiplicativePartiallyInvertibleMonoid<Element>, GenericDivisionRing<math::add<Element>, math::mult<Element>, Element>{ axiom NonZeroDivisibility(Element x) { if (x != zero(x)) x / x == one(x); }}; auto concept Field<typename Element> : DivisionRing<Element>, CommutativeRingWithIdentity<Element>, GenericField<math::add<Element>, math::mult<Element>, Element>{};// ======================// Miscellaneous concepts// ======================// that shall find a better place later// EqualityComparable will have the != when defaults are supported// At this point the following won't needed anymoreauto concept FullEqualityComparable<typename T, typename U = T>{ //requires std::EqualityComparable<T, U>; bool operator==(const T&, const U&); bool operator!=(const T&, const U&);};// Closure of EqualityComparable under a binary operation:// That is, the result of this binary operation is also EqualityComparable// with itself and with the operand type.auto concept Closed2EqualityComparable<typename Operation, typename Element> : BinaryIsoFunction<Operation, Element>{ requires FullEqualityComparable<Element>; requires FullEqualityComparable< BinaryIsoFunction<Operation, Element>::result_type >; requires FullEqualityComparable< Element, BinaryIsoFunction<Operation, Element>::result_type >; requires FullEqualityComparable< BinaryIsoFunction<Operation, Element>::result_type, Element >;};// LessThanComparable will have the other operators when defaults are supported// At this point the following won't needed anymoreauto concept FullLessThanComparable<typename T, typename U = T>{ bool operator<(const T&, const U&); bool operator<=(const T&, const U&); bool operator>(const T&, const U&); bool operator>=(const T&, const U&);};// Same for LessThanComparableauto concept Closed2LessThanComparable<typename Operation, typename Element> : BinaryIsoFunction<Operation, Element>{ requires FullLessThanComparable<Element>; requires FullLessThanComparable< BinaryIsoFunction<Operation, Element>::result_type >; requires FullLessThanComparable< Element, BinaryIsoFunction<Operation, Element>::result_type >; requires FullLessThanComparable< BinaryIsoFunction<Operation, Element>::result_type, Element >;};#if 0auto concept NumericOperatorResultConvertible<typename T> : AddableWithAssign<T>, SubtractableWithAssign<T>, MultiplicableWithAssign<T>, DivisibleWithAssign<T>{ requires std::Convertible< AddableWithAssign<T>::result_type, T>; requires std::Convertible< SubtractableWithAssign<T>::result_type, T>; requires std::Convertible< MultiplicableWithAssign<T>::result_type, T>; requires std::Convertible< DivisibleWithAssign<T>::result_type, T>;}#endifauto concept AdditionResultConvertible<typename T>{ typename result_type; result_type operator+(T t, T u); requires std::Convertible<result_type, T>; typename result_type; result_type operator+=(T& t, T u); requires std::Convertible<result_type, T>;}; auto concept SubtractionResultConvertible<typename T>{ typename result_type; result_type operator-(T t, T u); requires std::Convertible<result_type, T>; typename result_type; result_type operator-=(T& t, T u); requires std::Convertible<result_type, T>;}; auto concept NumericOperatorResultConvertible<typename T> : AdditionResultConvertible<T>, SubtractionResultConvertible<T>{};// ====================// Default Concept Maps// ====================#ifndef LA_NO_CONCEPT_MAPS// ==============// Integral Types// ==============template <typename T> requires std::SignedIntegral<T>concept_map CommutativeRingWithIdentity<T> {}template <typename T> requires std::UnsignedIntegral<T>concept_map AdditiveCommutativeMonoid<T> {}template <typename T> requires std::UnsignedIntegral<T>concept_map MultiplicativeCommutativeMonoid<T> {}// ====================// Floating Point Types// ====================template <typename T> requires Float<T>concept_map Field<T> {}template <typename T> requires Complex<T>concept_map Field<T> {}// ===========// Min and Max// ===========// Draft version: defined generously unless there will be problems with some typestemplate <typename Element>concept_map CommutativeMonoid< max<Element>, Element > { // Why do we need this? typedef Element identity_result_type;}template <typename Element>concept_map CommutativeMonoid< min<Element>, Element >{ // Why do we need this? typedef Element identity_result_type;}#endif // LA_NO_CONCEPT_MAPS#endif // __GXX_CONCEPTS__// =================================================// Concept to specify return type of abs (and norms)// =================================================#ifdef __GXX_CONCEPTS__// Concept to specify to specify projection of scalar value to comparable type// For instance as return type of abs// Minimalist definition for maximal applicabilityauto concept Magnitude<typename T>{ typename type = T;};template <typename T>concept_map Magnitude<std::complex<T> >{ typedef T type;}// Concept for norms etc., which are real values in mathematical definitionsauto concept RealMagnitude<typename T> : Magnitude<T>{ requires FullEqualityComparable<type>; requires FullLessThanComparable<type>; requires Field<type>; type sqrt(type); // typename sqrt_result; // sqrt_result sqrt(type); // requires std::Convertible<sqrt_result, type>; // using std::abs; type abs(T);}#else // now without conceptstemplate <typename T>struct Magnitude{ typename type = T;};template <typename T>struct Magnitude<std::complex<T> >{ typedef T type;}template <typename T> struct RealMagnitude : public Magnitude<T>{}#endif // __GXX_CONCEPTS__// Type trait version both available with and w/o concepts (TBD: Macro finally :-( )// For the moment everything is its own magnitude type, unless stated otherwisetemplate <typename T>struct magnitude_type_trait{ typedef T type;};template <typename T>struct magnitude_type_trait< std::complex<T> >{ typedef T type;};// =========================================// Concepts for convenience (many from Rolf)// =========================================#ifdef __GXX_CONCEPTS__//The following concepts Addable, Subtractable etc. differ from std::Addable, std::Subtractable //etc. in so far that no default for result_type is provided, thus allowing automated return type deductionauto concept Addable<typename T, typename U = T>{ typename result_type; result_type operator+(const T& t, const U& u);}; // Usually + and += are both defined// + can be efficiently derived from += but not vice versaauto concept AddableWithAssign<typename T, typename U = T>{ typename assign_result_type; assign_result_type operator+=(T& x, U y); // Operator + is by default defined with += typename result_type; result_type operator+(T x, U y);#if 0 { // Default requires std::CopyConstructible, without default not needed Element tmp(x); return tmp += y; defaults NYS }#endif };auto concept Subtractable<typename T, typename U = T>{ typename result_type; result_type operator-(const T& t, const U& u);}; // Usually - and -= are both defined// - can be efficiently derived from -= but not vice versaauto concept SubtractableWithAssign<typename T, typename U = T>{ typename assign_result_type; assign_result_type operator-=(T& x, U y); // Operator - is by default defined with -= typename result_type; result_type operator-(T x, U y);#if 0 { // Default requires std::CopyConstructible, without default not needed Element tmp(x); return tmp -= y; defaults NYS }#endif };auto concept Multiplicable<typename T, typename U = T>{ typename result_type; result_type operator*(const T& t, const U& u);};// Usually * and *= are both defined// * can be efficiently derived from *= but not vice versaauto concept MultiplicableWithAssign<typename T, typename U = T>{ typename assign_result_type; assign_result_type operator*=(T& x, U y); // Operator * is by default defined with *= typename result_type; result_type operator*(T x, U y);#if 0 { // Default requires std::CopyConstructible, without default not needed Element tmp(x); return tmp *= y; defaults NYS }#endif };auto concept Divisible<typename T, typename U = T>{ typename result_type; result_type operator / (const T&, const U&);};// Usually * and *= are both defined// * can be efficiently derived from *= but not vice versaauto concept DivisibleWithAssign<typename T, typename U = T>{ typename assign_result_type; assign_result_type operator*=(T& x, U y); // Operator * is by default defined with *= typename result_type; result_type operator*(T x, U y);#if 0 { // Default requires std::CopyConstructible, without default not needed Element tmp(x); return tmp *= y; defaults NYS }#endif };auto concept Transposable<typename T>{ typename result_type; result_type trans(T&);}; // Unary Negation -> Any suggestions for better names?! Is there a word as "negatable"?!auto concept Negatable<typename S>{ typename result_type = S; result_type operator-(const S&);};// Or HasAbs?using std::abs;auto concept AbsApplicable<typename S>{ // There are better ways to define abs than the way it is done in std // Likely we replace the using one day typename result_type; result_type abs(const S&);};using std::conj;auto concept HasConjugate<typename S>{ typename result_type; result_type conj(const S&);}; // We need the following; might be placed somewhere else latertemplate <Float T>concept_map HasConjugate<T> { typedef T result_type; result_type conj(const T& s) {return s;}}// Dot product to be defined:auto concept Dottable<typename T, typename U = T>{ typename result_type = T; result_type dot(const T&t, const U& u);}; auto concept OneNormApplicable<typename V> { typename result_type; result_type one_norm(const V&);};auto concept TwoNormApplicable<typename V> { typename result_type; result_type two_norm(const V&);};auto concept InfinityNormApplicable<typename V> { typename result_type; result_type inf_norm(const V&);};#endif // __GXX_CONCEPTS__} // namespace math#endif // LA_CONCEPTS_INCLUDE
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -