?? positive_real_power.cpp
字號:
#include <iostream>#include <cmath>#include <boost/numeric/linear_algebra/operators.hpp>#include <boost/numeric/linear_algebra/concepts.hpp>#include <boost/numeric/linear_algebra/identity.hpp>#include <boost/numeric/linear_algebra/inverse.hpp>#include <boost/numeric/linear_algebra/is_invertible.hpp>#include <libs/numeric/linear_algebra/test/algebraic_functions.hpp>#include <libs/numeric/linear_algebra/test/power.hpp>#include <libs/numeric/linear_algebra/test/positive_real.hpp>#include <libs/numeric/linear_algebra/test/positive_real_power.hpp>// User defined data types and operatorsusing mtl::positive_real;// We assume that 0 and infinity is not to guarantee invertibility# ifdef __GXX_CONCEPTS__ namespace math { concept_map SemiGroup< semigroup_mult, positive_real > {}; concept_map Monoid< monoid_mult, positive_real > {}; concept_map PartiallyInvertibleMonoid< pim_mult, positive_real > {}; concept_map Group< group_mult, positive_real > {}; }# endif int main(int, char* []) { using mtl::power; using math::mult; positive_real value(1.1), zero(0.0); compute_power(value, 777, magma_mult(), "Magma"); std::cout << '\n'; compute_power(value, 777, semigroup_mult(), "SemiGroup"); std::cout << '\n'; compute_power(value, 777, monoid_mult(), "Monoid"); compute_power(value, -777, monoid_mult(), "Monoid"); std::cout << '\n'; compute_power(value, 777, pim_mult(), "PIMonoid"); compute_power(value, -777, pim_mult(), "PIMonoid"); compute_power(zero, 777, pim_mult(), "PIMonoid"); compute_power(zero, -777, pim_mult(), "PIMonoid"); std::cout << '\n'; compute_power(value, 777, group_mult(), "Group"); compute_power(value, -777, group_mult(), "Group"); compute_power(zero, 777, group_mult(), "Group"); compute_power(zero, -777, group_mult(), "Group"); return 0;}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -