亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? genericpradosschemesforfastmarching_3d.h.svn-base

?? fast marching method
?? SVN-BASE
?? 第 1 頁 / 共 2 頁
字號:
/*------------------------------------------------------------------------------------------------------    File        : GenericPradosSchemesForFastMarching_3D.h   (GCM Library)  Authors      : Emmanuel Prados (UCLA/INRIA), Christophe Lenglet (INRIA), Jean-Philippe Pons (INRIA)  Description : This method explicits the scheme proposed by Prados etal. in dimension 3 (this scheme is                shortly described in sections 4.3 of INRIA Research Report 5845  -- in particular, see 		sections 4.3.1 and 4.3.2).    --------------  License     : This software is governed by the CeCILL-C license under French law and abiding by the   rules of distribution of free software.   Users can use, modify and/ or redistribute the software under the terms of the CeCILL-C. In particular,   the exercising of this right is conditional upon the obligation to make available to the community the   modifications made to the source code of the software so as to contribute to its evolution (e.g. by the   mean of the web; i.e. by publishing a web page).    In this respect, the risks associated with loading, using, modifying and/or developing or reproducing   the software by the user are brought to the user's attention, given its Free Software status, which may   make it complicated to use, with the result that its use is reserved for developers and experienced   professionals having in-depth computer knowledge. Users are therefore encouraged to load and test the   suitability of the software as regards their requirements in conditions enabling the security of their  systems and/or data to be ensured and, more generally, to use and operate it in the same conditions of   security. This Agreement may be freely reproduced and published, provided it is not altered, and that   no provisions are either added or removed herefrom.     CeCILL-C FREE SOFTWARE LICENSE AGREEMENT is available in the file                           Licence_CeCILL-C_V1-en.txt   or at                            http://www.cecill.info/index.en.html.  This Agreement may apply to any or all software for which the holder of the economic rights decides to   submit the use thereof to its provisions.    --------------  Associated publications  : This C++ code corresponds to the implementation of the algorithm presented   in the following articles:    - E. Prados, C. Lenglet, J.P. Pons, N. Wotawa, R. Deriche, O. Faugeras, S. Soatto;     Control Theory and Fast Marching Methods for Brain Connectivity Mapping; INRIA Research Report 5845     UCLA Computer Science Department Technical Report 060004, February 2006.  - E. Prados, C. Lenglet, J.P. Pons, N. Wotawa, R. Deriche, O. Faugeras, S. Soatto;     Control Theory and Fast Marching Methods for Brain Connectivity Mapping;     Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY,     I: 1076-1083, June 17-22, 2006.    - For more references, we refer to the official web page of the GCM Library and to authors' web pages.  Please, if you use the GCM library in you work, make sure you will include the reference to the work   of the authors in your publications.    ----------------------------------------------------------------------------------------------------*/#ifndef GENERICPRADOSSCHEMESFORFASTMARCHING_3D_H#define GENERICPRADOSSCHEMESFORFASTMARCHING_3D_H#include "Globals.h"#include "FastMarching_WithOptimalDynamics.h"/**************************************************/// Dimension 3 =====================================/**************************************************//*Here, we deal with the equation of the form:$$ H(x,\nabla u(x)) = 0 . $$Let $H^*$ be the Legendre transform of $H$.For $i \in [1..N]$, we denote$$ H_i(x,p) = sup_{a\in Dom(H^*), a_i = 0}  a \cdot p - H^*(x,a)$$.$$ H_ij(x,p) = sup_{a\in Dom(H^*), a_i = 0 and a_j = 0,  j \neq i}  a \cdot p - H^*(x,a)$$.*//**************************************************/// Note about the optimal dynamics: // The preservation and the transmission of the optimal dymamics is not usefull if we only want // to compute the viscosity solution of the considered equation by the Fast Marching Method. // Nevertheless the computation of the optimal dymamics (function $f$ in Prados's papers) is // necessary inside (i.e. when we develop) the functions//      bool eqSolverOnPart_with_s1s2s3_nonNull(...)//      bool eqSolverOnPart_withOne_si_Null(...)//      bool eqSolverOnPart_withTwo_si_Null(...)// in order to be able to know if the considered simplex is a good candidate.// Note: preservation and transmission of the optimal dymamics can be usefull in many applications// as for example fibers tracking in DTI.namespace FastLevelSet {    template <typename T = float>    class PradosSchemesForFastMarching_3D : public FastMarching_WithOptDynamics<T> {    public:        // Constructor        PradosSchemesForFastMarching_3D(T *_data, int _width, int _height, int _depth, double *_voro = NULL) : FastMarching_WithOptDynamics<T>(_data,_width,_height,_depth,_voro) {}        // Destructor        virtual ~PradosSchemesForFastMarching_3D() {}    protected:        //////////////////////////////////////////////////////        // These next THREE Functions must be overcharged !        //////////////////////////////////////////////////////        //////////////////////////////////////////////////////////////////////////        //        //  Let us denote:        //        //      $$ H_{s1s2s3}(x,p) = sup_{a\in Dom_{s1s2s3}}  a \cdot p - H^*(x,a)$$.        //      where        //      $$ Dom_{s1s2s3}  = \{ a\in Dom(H^*) such that for all i, sign(a_i)*si < 0,        //        //  eqSolverOnPart_with_s1s2s3_nonNull must solve the following equation (in $t$) :        //        //  $ H_{s1s2s3}(x,p_t) = 0 $     (equation (1)),        //        //  where $[p_t]_i = [ t-u(x+sihiei)] / (-sihi)$.        //        //  Solve equation (1) is equivalent to solve equation        //        //  $ H(x,p_t) = 0 $     (equation (2)),        //        //  and then, amongst the solutions of equation (2),  chose        //  the solution $t_0$ of such that:        //  $\nabla H (x,p_{t_0}) * si <0 $.        //        //  Notes:        //  1)  $\nabla H (x,p_{t_0})$ corresponds with the optimal        //      control of $ H(x,p_{t_0}) = 0 $.        //        //  2)  Here, the $hi$ are not given as parameters, since they        //  are supposed constant, and known in the next inherited        //  classes...        //        //  3) the parameter Ui corresponds with the value $u(x+sihiei)$        //        //////////////////////////////////////////////////////////////////////////        virtual bool eqSolverOnPart_with_s1s2s3_nonNull(            const T U1, const T U2, const T U3,                 // Values of the solution at the considered neigborhood voxels,            const int s1, const int s2, const int s3,           // signs associated to the considered sector,            const int x, const int y, const int z,              // coordinates of the considered voxel,            T &Root,                                            // solution.            T &optDymamics1, T &optDymamics2, T &optDymamics3   // optimal dynamic associated to the solution.            ) const = 0;        virtual bool eqSolverOnPart_withOne_si_Null(            const T U1, const T U2, const T U3,            const int s1, const int s2, const int s3,            const int x, const int y, const int z,            const int indice_si_EqualZero,            T &Root,            T &optDymamics1,    T &optDymamics2,    T &optDymamics3            ) const = 0;        virtual bool eqSolverOnPart_withTwo_si_Null(            const T U1, const T U2, const T U3,            const int s1, const int s2, const int s3,            const int x, const int y, const int z,            const int indice_si_DiffZero,            T &Root,            T &optDymamics1,    T &optDymamics2,    T &optDymamics3            ) const = 0;        //////////////////////////////////////////////////////        // The next function must NOT be overcharged !        //////////////////////////////////////////////////////        ////////////////////////////////////////////////////////////////////////////////////////////////////////////        // Update of a point        ////////////////////////////////////////////////////////////////////////////////////////////////////////////        virtual T _UpdateValue(const int x, const int y, const int z) const        {            // Let us deal with the boundary:            if ((x==0) || (x==this->width-1)  ||                (y==0) || (y==this->height-1) ||                (z==0) || (z==this->depth-1))                return this->big;            int gs1=0, gs2=0, gs3=0;    //  give the simplex of the smallest                                        //  root (usefull for recovering the optimal dynamics).            return _UpdateValueB(x,y,z,gs1,gs2,gs3);                    }// End of the methode "_UpdateValue".                // With Voronoi information        virtual T _UpdateValue(const int x, const int y, const int z, int &mx, int& my, int &mz) const        {            // Let us deal with the boundary:            if ((x==0) || (x==this->width-1)  ||                (y==0) || (y==this->height-1) ||                (z==0) || (z==this->depth-1))                return this->big;                        int gs1=0, gs2=0, gs3=0;    //  give the simplex of the smallest                                        //  root (usefull for recovering the optimal dynamics).            T val = _UpdateValueB(x,y,z,gs1,gs2,gs3);            // Voronoi information            mx = x + gs1-1;            my = y;            mz = z;            T res = this->_GetValue(mx,y,z);            if (this->_GetValue(x,gs2+y-1,z) < res)            {                mx = x;                my = y + gs2-1;            }            if (this->_GetValue(x,y,gs3+z-1) < res)            {                my = y;                mz = z + gs3-1;            }            return val;        }// End of the methode "_UpdateValue".                virtual T _UpdateValueB(const int x, const int y, const int z, int &gs1, int& gs2, int &gs3) const        {            // Initialisation of s1,s2,S3.            int s1=0, s2=0, s3=0;            // Initialisation of DoExistSol.            bool DoExistSol[3][3][3];            for(s1=0; s1<3; s1++) for(s2=0; s2<3; s2++) for(s3=0; s3<3; s3++) {                DoExistSol[s1][s2][s3]=false;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品电影一区二区| 国产欧美日韩卡一| 国产美女精品一区二区三区| 伊人色综合久久天天| 精品久久一区二区三区| 色一区在线观看| 国产激情一区二区三区四区 | 欧美电影免费观看高清完整版在线观看| 国模少妇一区二区三区| 午夜电影网亚洲视频| 亚洲色图19p| 久久精品欧美一区二区三区麻豆| 欧美日韩久久一区| 91久久一区二区| av电影在线观看不卡| 久久99精品国产.久久久久| 午夜精品视频在线观看| 亚洲女人****多毛耸耸8| 欧美国产欧美综合| 国产日韩欧美综合一区| 久久综合九色综合欧美就去吻| 欧美日韩一本到| 97se亚洲国产综合在线| 成人精品国产免费网站| 国产精品一区二区久激情瑜伽| 美脚の诱脚舐め脚责91| 爽好久久久欧美精品| 亚洲自拍偷拍九九九| 亚洲精品成人悠悠色影视| 国产精品久久国产精麻豆99网站| 久久久久高清精品| 国产片一区二区| 精品剧情在线观看| 欧美精品一区视频| 国产丝袜美腿一区二区三区| 久久久久免费观看| 国产欧美一区二区精品性色超碰| 久久综合狠狠综合久久激情 | 国产精品久久久久久久裸模| 国产欧美精品一区二区色综合| 久久综合中文字幕| 亚洲精品一区二区三区香蕉| 久久你懂得1024| 国产精品嫩草影院com| 国产精品护士白丝一区av| 亚洲国产精品成人综合色在线婷婷| 国产亚洲欧美日韩日本| 国产午夜精品福利| 日韩理论片一区二区| 亚洲主播在线观看| 亚洲成人av免费| 美女脱光内衣内裤视频久久网站 | 成人激情黄色小说| 色综合久久88色综合天天6| 91成人在线观看喷潮| 欧美日本一区二区| 精品久久一区二区| 国产精品久久久久久久岛一牛影视 | 亚洲免费电影在线| 亚洲国产视频直播| 美女网站一区二区| 国产成人一区在线| 色婷婷久久久综合中文字幕| 欧美老女人在线| 欧美大片在线观看一区二区| 国产精品三级av在线播放| 一区二区三区丝袜| 日韩不卡在线观看日韩不卡视频| 国产麻豆视频精品| 色一情一伦一子一伦一区| 欧美片在线播放| 国产夜色精品一区二区av| 中文字幕亚洲一区二区av在线| 亚瑟在线精品视频| 狠狠v欧美v日韩v亚洲ⅴ| av中文一区二区三区| 欧美精品精品一区| 中文字幕av在线一区二区三区| 亚洲综合图片区| 国产麻豆精品久久一二三| 99re这里只有精品视频首页| 欧美午夜精品久久久久久超碰| 日韩三区在线观看| 亚洲免费观看高清在线观看| 蜜桃av一区二区三区电影| 高清shemale亚洲人妖| 欧美久久久久免费| 国产精品久久久久久亚洲伦| 蜜臀国产一区二区三区在线播放| 99综合影院在线| 欧美成人女星排名| 夜夜精品浪潮av一区二区三区| 久久国产生活片100| 色综合久久久网| 国产欧美一区二区精品婷婷| 日韩中文字幕av电影| 91视频91自| 国产欧美一区在线| 美女视频黄免费的久久| 日本丰满少妇一区二区三区| 久久久久国产精品麻豆| 日韩高清一区在线| 91国偷自产一区二区开放时间| 久久久国产精品不卡| 男男视频亚洲欧美| 欧美三级欧美一级| 亚洲视频在线一区| www.色精品| 国产免费成人在线视频| 久久99精品久久久久久| 在线不卡一区二区| 亚洲一区二区三区中文字幕| 成人精品高清在线| 欧美激情综合网| 国产高清精品久久久久| 日韩精品一区二区三区视频在线观看 | 亚洲欧洲成人精品av97| 激情综合网天天干| 精品免费日韩av| 美女久久久精品| 91精品国产91热久久久做人人| 一区二区三区欧美亚洲| 一本大道综合伊人精品热热| 国产精品美女视频| www.性欧美| 亚洲欧洲日韩在线| 91在线一区二区三区| 国产精品久久久久久妇女6080| 成人深夜视频在线观看| 久久久精品免费观看| 国产一区二区精品久久91| 欧美大尺度电影在线| 免费一区二区视频| 日韩精品影音先锋| 国内精品嫩模私拍在线| 精品国产一区二区三区久久久蜜月| 日韩国产欧美一区二区三区| 日韩一区二区在线看| 日韩不卡在线观看日韩不卡视频| 91麻豆精品91久久久久久清纯| 日韩黄色一级片| 精品少妇一区二区三区日产乱码 | 一级中文字幕一区二区| 色香色香欲天天天影视综合网| 亚洲少妇30p| 日本精品免费观看高清观看| 亚洲精品国久久99热| 欧美日韩中文国产| 久久精品国产秦先生| 久久午夜免费电影| 成人av影院在线| 樱桃国产成人精品视频| 欧美情侣在线播放| 国产在线国偷精品产拍免费yy| 中文字幕第一区综合| 色婷婷综合在线| 婷婷综合在线观看| 久久久夜色精品亚洲| 99久久久久久| 首页欧美精品中文字幕| 久久久久99精品一区| 国产成人在线电影| 亚洲国产精品ⅴa在线观看| 乱一区二区av| 欧美伊人精品成人久久综合97| 成人激情文学综合网| 884aa四虎影成人精品一区| 亚洲人被黑人高潮完整版| 国产精品久久久久婷婷| 色噜噜狠狠色综合中国| 久久午夜免费电影| 自拍偷拍国产亚洲| 国产精品一区专区| 92国产精品观看| 国产精品污污网站在线观看| 亚洲欧洲一区二区在线播放| 亚洲国产日韩综合久久精品| 国产1区2区3区精品美女| 伊人夜夜躁av伊人久久| 精品国产伦一区二区三区免费| 成人app网站| 日产国产欧美视频一区精品| 亚洲国产精品黑人久久久| 欧美日韩你懂的| 国产福利一区二区三区| 亚洲国产中文字幕| 日本一区二区三区国色天香| 欧美色综合网站| 丁香六月综合激情| 日本麻豆一区二区三区视频| 国产精品国产三级国产| 日韩三级电影网址| 在线观看免费亚洲| 成人免费观看男女羞羞视频| 偷偷要91色婷婷| 亚洲麻豆国产自偷在线| 26uuu久久综合| 欧美放荡的少妇| 色综合天天天天做夜夜夜夜做| 国产毛片精品视频|