亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? genericpradosschemesforfastmarching_3d.h

?? fast marching method
?? H
?? 第 1 頁 / 共 2 頁
字號:
/*------------------------------------------------------------------------------------------------------    File        : GenericPradosSchemesForFastMarching_3D.h   (GCM Library)  Authors      : Emmanuel Prados (UCLA/INRIA), Christophe Lenglet (INRIA), Jean-Philippe Pons (INRIA)  Description : This method explicits the scheme proposed by Prados etal. in dimension 3 (this scheme is                shortly described in sections 4.3 of INRIA Research Report 5845  -- in particular, see 		sections 4.3.1 and 4.3.2).    --------------  License     : This software is governed by the CeCILL-C license under French law and abiding by the   rules of distribution of free software.   Users can use, modify and/ or redistribute the software under the terms of the CeCILL-C. In particular,   the exercising of this right is conditional upon the obligation to make available to the community the   modifications made to the source code of the software so as to contribute to its evolution (e.g. by the   mean of the web; i.e. by publishing a web page).    In this respect, the risks associated with loading, using, modifying and/or developing or reproducing   the software by the user are brought to the user's attention, given its Free Software status, which may   make it complicated to use, with the result that its use is reserved for developers and experienced   professionals having in-depth computer knowledge. Users are therefore encouraged to load and test the   suitability of the software as regards their requirements in conditions enabling the security of their  systems and/or data to be ensured and, more generally, to use and operate it in the same conditions of   security. This Agreement may be freely reproduced and published, provided it is not altered, and that   no provisions are either added or removed herefrom.     CeCILL-C FREE SOFTWARE LICENSE AGREEMENT is available in the file                           Licence_CeCILL-C_V1-en.txt   or at                            http://www.cecill.info/index.en.html.  This Agreement may apply to any or all software for which the holder of the economic rights decides to   submit the use thereof to its provisions.    --------------  Associated publications  : This C++ code corresponds to the implementation of the algorithm presented   in the following articles:    - E. Prados, C. Lenglet, J.P. Pons, N. Wotawa, R. Deriche, O. Faugeras, S. Soatto;     Control Theory and Fast Marching Methods for Brain Connectivity Mapping; INRIA Research Report 5845     UCLA Computer Science Department Technical Report 060004, February 2006.  - E. Prados, C. Lenglet, J.P. Pons, N. Wotawa, R. Deriche, O. Faugeras, S. Soatto;     Control Theory and Fast Marching Methods for Brain Connectivity Mapping;     Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY,     I: 1076-1083, June 17-22, 2006.    - For more references, we refer to the official web page of the GCM Library and to authors' web pages.  Please, if you use the GCM library in you work, make sure you will include the reference to the work   of the authors in your publications.    ----------------------------------------------------------------------------------------------------*/#ifndef GENERICPRADOSSCHEMESFORFASTMARCHING_3D_H#define GENERICPRADOSSCHEMESFORFASTMARCHING_3D_H#include "Globals.h"#include "FastMarching_WithOptimalDynamics.h"/**************************************************/// Dimension 3 =====================================/**************************************************//*Here, we deal with the equation of the form:$$ H(x,\nabla u(x)) = 0 . $$Let $H^*$ be the Legendre transform of $H$.For $i \in [1..N]$, we denote$$ H_i(x,p) = sup_{a\in Dom(H^*), a_i = 0}  a \cdot p - H^*(x,a)$$.$$ H_ij(x,p) = sup_{a\in Dom(H^*), a_i = 0 and a_j = 0,  j \neq i}  a \cdot p - H^*(x,a)$$.*//**************************************************/// Note about the optimal dynamics: // The preservation and the transmission of the optimal dymamics is not usefull if we only want // to compute the viscosity solution of the considered equation by the Fast Marching Method. // Nevertheless the computation of the optimal dymamics (function $f$ in Prados's papers) is // necessary inside (i.e. when we develop) the functions//      bool eqSolverOnPart_with_s1s2s3_nonNull(...)//      bool eqSolverOnPart_withOne_si_Null(...)//      bool eqSolverOnPart_withTwo_si_Null(...)// in order to be able to know if the considered simplex is a good candidate.// Note: preservation and transmission of the optimal dymamics can be usefull in many applications// as for example fibers tracking in DTI.namespace FastLevelSet {    template <typename T = float>    class PradosSchemesForFastMarching_3D : public FastMarching_WithOptDynamics<T> {    public:        // Constructor        PradosSchemesForFastMarching_3D(T *_data, int _width, int _height, int _depth, double *_voro = NULL) : FastMarching_WithOptDynamics<T>(_data,_width,_height,_depth,_voro) {}        // Destructor        virtual ~PradosSchemesForFastMarching_3D() {}    protected:        //////////////////////////////////////////////////////        // These next THREE Functions must be overcharged !        //////////////////////////////////////////////////////        //////////////////////////////////////////////////////////////////////////        //        //  Let us denote:        //        //      $$ H_{s1s2s3}(x,p) = sup_{a\in Dom_{s1s2s3}}  a \cdot p - H^*(x,a)$$.        //      where        //      $$ Dom_{s1s2s3}  = \{ a\in Dom(H^*) such that for all i, sign(a_i)*si < 0,        //        //  eqSolverOnPart_with_s1s2s3_nonNull must solve the following equation (in $t$) :        //        //  $ H_{s1s2s3}(x,p_t) = 0 $     (equation (1)),        //        //  where $[p_t]_i = [ t-u(x+sihiei)] / (-sihi)$.        //        //  Solve equation (1) is equivalent to solve equation        //        //  $ H(x,p_t) = 0 $     (equation (2)),        //        //  and then, amongst the solutions of equation (2),  chose        //  the solution $t_0$ of such that:        //  $\nabla H (x,p_{t_0}) * si <0 $.        //        //  Notes:        //  1)  $\nabla H (x,p_{t_0})$ corresponds with the optimal        //      control of $ H(x,p_{t_0}) = 0 $.        //        //  2)  Here, the $hi$ are not given as parameters, since they        //  are supposed constant, and known in the next inherited        //  classes...        //        //  3) the parameter Ui corresponds with the value $u(x+sihiei)$        //        //////////////////////////////////////////////////////////////////////////        virtual bool eqSolverOnPart_with_s1s2s3_nonNull(            const T U1, const T U2, const T U3,                 // Values of the solution at the considered neigborhood voxels,            const int s1, const int s2, const int s3,           // signs associated to the considered sector,            const int x, const int y, const int z,              // coordinates of the considered voxel,            T &Root,                                            // solution.            T &optDymamics1, T &optDymamics2, T &optDymamics3   // optimal dynamic associated to the solution.            ) const = 0;        virtual bool eqSolverOnPart_withOne_si_Null(            const T U1, const T U2, const T U3,            const int s1, const int s2, const int s3,            const int x, const int y, const int z,            const int indice_si_EqualZero,            T &Root,            T &optDymamics1,    T &optDymamics2,    T &optDymamics3            ) const = 0;        virtual bool eqSolverOnPart_withTwo_si_Null(            const T U1, const T U2, const T U3,            const int s1, const int s2, const int s3,            const int x, const int y, const int z,            const int indice_si_DiffZero,            T &Root,            T &optDymamics1,    T &optDymamics2,    T &optDymamics3            ) const = 0;        //////////////////////////////////////////////////////        // The next function must NOT be overcharged !        //////////////////////////////////////////////////////        ////////////////////////////////////////////////////////////////////////////////////////////////////////////        // Update of a point        ////////////////////////////////////////////////////////////////////////////////////////////////////////////        virtual T _UpdateValue(const int x, const int y, const int z) const        {            // Let us deal with the boundary:            if ((x==0) || (x==this->width-1)  ||                (y==0) || (y==this->height-1) ||                (z==0) || (z==this->depth-1))                return this->big;            int gs1=0, gs2=0, gs3=0;    //  give the simplex of the smallest                                        //  root (usefull for recovering the optimal dynamics).            return _UpdateValueB(x,y,z,gs1,gs2,gs3);                    }// End of the methode "_UpdateValue".                // With Voronoi information        virtual T _UpdateValue(const int x, const int y, const int z, int &mx, int& my, int &mz) const        {            // Let us deal with the boundary:            if ((x==0) || (x==this->width-1)  ||                (y==0) || (y==this->height-1) ||                (z==0) || (z==this->depth-1))                return this->big;                        int gs1=0, gs2=0, gs3=0;    //  give the simplex of the smallest                                        //  root (usefull for recovering the optimal dynamics).            T val = _UpdateValueB(x,y,z,gs1,gs2,gs3);            // Voronoi information            mx = x + gs1-1;            my = y;            mz = z;            T res = this->_GetValue(mx,y,z);            if (this->_GetValue(x,gs2+y-1,z) < res)            {                mx = x;                my = y + gs2-1;            }            if (this->_GetValue(x,y,gs3+z-1) < res)            {                my = y;                mz = z + gs3-1;            }            return val;        }// End of the methode "_UpdateValue".                virtual T _UpdateValueB(const int x, const int y, const int z, int &gs1, int& gs2, int &gs3) const        {            // Initialisation of s1,s2,S3.            int s1=0, s2=0, s3=0;            // Initialisation of DoExistSol.            bool DoExistSol[3][3][3];            for(s1=0; s1<3; s1++) for(s2=0; s2<3; s2++) for(s3=0; s3<3; s3++) {                DoExistSol[s1][s2][s3]=false;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色天天综合色天天久久| 色激情天天射综合网| 欧美中文字幕亚洲一区二区va在线 | 亚洲色图制服诱惑| 国产精品影音先锋| 日韩欧美在线1卡| 午夜欧美电影在线观看| 欧美在线一二三| 国产91精品一区二区麻豆网站| 欧美一级一区二区| 久久精品国产77777蜜臀| 日韩一区二区三区视频在线 | 亚洲品质自拍视频网站| 一本大道久久a久久综合| 国产九色sp调教91| 久久国产精品区| 日本成人在线不卡视频| 欧美一级视频精品观看| 91女神在线视频| 亚洲r级在线视频| 3atv一区二区三区| 美脚の诱脚舐め脚责91| 精品成人一区二区| 国产一区二区三区在线观看免费| 久久久久久久久伊人| 成人一区二区三区| 亚洲卡通动漫在线| 欧美日本一区二区三区| 精品一区二区三区在线观看国产| 欧美激情中文不卡| 色呦呦日韩精品| 97国产一区二区| 亚洲va韩国va欧美va| 一区二区三区高清在线| 欧美一区二区视频网站| 欧美亚洲动漫制服丝袜| 国产一区二区精品久久99 | 本田岬高潮一区二区三区| 一区二区三区四区视频精品免费| 国产精品美女视频| 欧美久久久久久久久中文字幕| 激情深爱一区二区| 亚洲精品五月天| 亚洲欧美色综合| 亚洲欧美色一区| 伊人性伊人情综合网| 一区二区三区四区在线免费观看| 中文字幕综合网| 亚洲制服丝袜一区| 欧美极品xxx| 中文字幕日韩一区二区| 2021国产精品久久精品| 欧美精品一级二级三级| 7878成人国产在线观看| 精品国产青草久久久久福利| 欧美精品一区视频| 国产精品国产三级国产aⅴ入口| 91麻豆精品国产91久久久久| 日韩女优制服丝袜电影| 在线亚洲一区观看| 91 com成人网| 欧美精品一区二区三区在线播放 | 成人午夜免费视频| 色综合久久久久久久久| 欧美日韩高清一区二区| 日韩精品中文字幕一区| 欧美激情一区在线观看| 一区二区免费看| 日韩福利电影在线| 国产一区二区视频在线| 99精品欧美一区二区蜜桃免费 | 亚洲国产精品二十页| 一区二区三区四区精品在线视频| 天堂va蜜桃一区二区三区| 一区二区三区国产精华| 日韩国产欧美三级| 成人三级伦理片| 欧美日韩国产片| 久久久久久久久蜜桃| 一区二区三区四区视频精品免费 | 亚洲成在人线免费| 国产精品中文欧美| 欧美色涩在线第一页| 91网上在线视频| 欧美一卡二卡在线观看| 国产精品网站在线播放| 偷拍自拍另类欧美| 成人禁用看黄a在线| 成人美女视频在线观看18| 欧美三级韩国三级日本三斤| 久久久久久久久一| 天天综合日日夜夜精品| 成人污污视频在线观看| 欧美一区二区三区免费在线看| 国产精品国产三级国产普通话99 | 国产一区不卡在线| 欧美男同性恋视频网站| 国产精品网站在线观看| 蜜桃av一区二区在线观看| 91麻豆自制传媒国产之光| 精品国产免费视频| 亚洲一区二区视频在线| av中文字幕在线不卡| 精品sm捆绑视频| 日韩激情中文字幕| 在线精品视频小说1| 中文字幕第一页久久| 久久se精品一区二区| 911精品国产一区二区在线| 亚洲日本护士毛茸茸| 国产传媒欧美日韩成人| 99精品国产91久久久久久| 精品捆绑美女sm三区| 国产日韩欧美制服另类| 亚洲精品日日夜夜| 风间由美中文字幕在线看视频国产欧美 | 青青草原综合久久大伊人精品优势| 日韩av一二三| 在线观看欧美黄色| 国产精品国产三级国产aⅴ中文 | 91在线视频观看| 久久久久国色av免费看影院| 久久99热国产| 欧美大片一区二区| 久久机这里只有精品| 日韩一区二区免费在线观看| 亚洲国产sm捆绑调教视频| 麻豆国产精品777777在线| 精品视频在线看| 一级特黄大欧美久久久| 一本色道久久综合精品竹菊| 亚洲日本在线a| 91麻豆蜜桃一区二区三区| 中文字幕一区在线观看视频| 成人在线一区二区三区| 欧美国产日韩精品免费观看| 国产传媒一区在线| 中文成人综合网| 9i在线看片成人免费| 亚洲视频 欧洲视频| 99re视频精品| 亚洲一区二区av在线| 欧美日韩国产bt| 日韩高清在线一区| 日韩午夜激情免费电影| 裸体健美xxxx欧美裸体表演| 欧美精品一区二区三| 国产在线一区二区| 国产欧美精品一区二区三区四区| 国产成人久久精品77777最新版本| 国产精品日韩精品欧美在线 | 久久夜色精品国产噜噜av | 日本高清免费不卡视频| 亚洲激情中文1区| 91麻豆精品国产综合久久久久久 | 欧美日韩免费观看一区二区三区| 亚洲福利视频一区二区| 欧美一二三四区在线| 狠狠色综合色综合网络| 中文子幕无线码一区tr| 色综合久久六月婷婷中文字幕| 亚洲一区二区三区三| 欧美mv日韩mv| 国产成人小视频| 一区二区欧美精品| 日韩一区二区在线看片| 国产乱码精品1区2区3区| 中文字幕在线不卡一区二区三区| 欧美性猛交xxxx黑人交| 久久精品国产久精国产爱| 国产精品久久国产精麻豆99网站| 在线免费不卡电影| 国内精品伊人久久久久av影院| 国产精品电影院| 91精品国产综合久久蜜臀 | 色噜噜狠狠色综合欧洲selulu| 亚洲成av人片在www色猫咪| 精品国产一区二区三区忘忧草| 成人国产免费视频| 夜夜爽夜夜爽精品视频| 精品免费视频.| 色婷婷亚洲综合| 国内精品国产三级国产a久久| 亚洲欧美一区二区三区国产精品| 91精品国产综合久久国产大片| 国产91在线观看丝袜| 天天综合色天天综合色h| 中文字幕亚洲一区二区av在线| 这里只有精品电影| 色综合久久久久久久| 国产剧情在线观看一区二区| 亚洲午夜一区二区| 国产精品丝袜黑色高跟| 日韩欧美一级二级三级| 91传媒视频在线播放| 国产成人精品亚洲午夜麻豆| 青青国产91久久久久久| 亚洲综合一区二区三区| 国产嫩草影院久久久久| 欧美一级欧美一级在线播放|