?? sorg2r.c
字號:
/** ======================================================================* NIST Guide to Available Math Software.* Fullsource for module SSYEVX.C from package CLAPACK.* Retrieved from NETLIB on Fri Mar 10 14:23:44 2000.* ======================================================================*/#include <f2c.h>/* Subroutine */ int sorg2r_(integer *m, integer *n, integer *k, real *a, integer *lda, real *tau, real *work, integer *info){/* -- LAPACK routine (version 2.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= SORG2R generates an m by n real matrix Q with orthonormal columns, which is defined as the first n columns of a product of k elementary reflectors of order m Q = H(1) H(2) . . . H(k) as returned by SGEQRF. Arguments ========= M (input) INTEGER The number of rows of the matrix Q. M >= 0. N (input) INTEGER The number of columns of the matrix Q. M >= N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. N >= K >= 0. A (input/output) REAL array, dimension (LDA,N) On entry, the i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by SGEQRF in the first k columns of its array argument A. On exit, the m-by-n matrix Q. LDA (input) INTEGER The first dimension of the array A. LDA >= max(1,M). TAU (input) REAL array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SGEQRF. WORK (workspace) REAL array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value ===================================================================== Test the input arguments Parameter adjustments Function Body */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; real r__1; /* Local variables */ static integer i, j, l; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), slarf_(char *, integer *, integer *, real *, integer *, real *, real *, integer *, real *), xerbla_(char *, integer *);#define TAU(I) tau[(I)-1]#define WORK(I) work[(I)-1]#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0 || *n > *m) { *info = -2; } else if (*k < 0 || *k > *n) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("SORG2R", &i__1); return 0; }/* Quick return if possible */ if (*n <= 0) { return 0; }/* Initialise columns k+1:n to columns of the unit matrix */ i__1 = *n; for (j = *k + 1; j <= *n; ++j) { i__2 = *m; for (l = 1; l <= *m; ++l) { A(l,j) = 0.f;/* L10: */ } A(j,j) = 1.f;/* L20: */ } for (i = *k; i >= 1; --i) {/* Apply H(i) to A(i:m,i:n) from the left */ if (i < *n) { A(i,i) = 1.f; i__1 = *m - i + 1; i__2 = *n - i; slarf_("Left", &i__1, &i__2, &A(i,i), &c__1, &TAU(i), & A(i,i+1), lda, &WORK(1)); } if (i < *m) { i__1 = *m - i; r__1 = -(doublereal)TAU(i); sscal_(&i__1, &r__1, &A(i+1,i), &c__1); } A(i,i) = 1.f - TAU(i);/* Set A(1:i-1,i) to zero */ i__1 = i - 1; for (l = 1; l <= i-1; ++l) { A(l,i) = 0.f;/* L30: */ }/* L40: */ } return 0;/* End of SORG2R */} /* sorg2r_ */
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -