亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? kf_cwpa_demo.m

?? documentation for optimal filtering toolbox for mathematical software package Matlab. The methods i
?? M
字號:
% Demonstration for Kalman filter and smoother using a 2D CWPA model%% Copyright (C) 2007 Jouni Hartikainen%% This software is distributed under the GNU General Public % Licence (version 2 or later); please refer to the file % Licence.txt, included with the software, for details.function kf_cwpa_demo% Transition matrix for the continous-time system.F = [0 0 1 0 0 0;     0 0 0 1 0 0;     0 0 0 0 1 0;     0 0 0 0 0 1;     0 0 0 0 0 0;     0 0 0 0 0 0];% Noise effect matrix for the continous-time system.L = [0 0;     0 0;     0 0;     0 0;     1 0;     0 1];% Stepsizedt = 0.5;% Process noise varianceq = 0.2;Qc = diag([q q]);% Discretization of the continous-time system.[A,Q] = lti_disc(F,L,Qc,dt);% Measurement model.H = [1 0 0 0 0 0;     0 1 0 0 0 0];% Variance in the measurements.r1 = 10;r2 = 5;R = diag([r1 r1]);% Generate the data.n = 50;Y = zeros(size(H,1),n);X_r = zeros(size(F,1),n);X_r(:,1) = [0 0 0 0 0 0]';for i = 2:n   X_r(:,i) = A*X_r(:,i-1) + gauss_rnd(zeros(size(F,1),1), Q);   % gauss_rnd( , ), what meaning????end% Generate the measurements.for i = 1:n   Y(:,i) = H*X_r(:,i) + gauss_rnd(zeros(size(Y,1),1), R);endclf; clc;disp('This is a demonstration program for the classical Kalman filter.');disp(' ');disp(['KF is used here to estimate the position of a moving object, whos ',...     'dynamics follow the CWPA-model described in the documentation ',...      'provided with the toolbox.']);disp(' ');disp(['We get noisy measurements from the objects position and velocity ',...      'on discrete time steps. The real position of the object and the ',...      'measurements made of them are displayed now. The blue line is the ',...      'real path of the object and the green dots represents the ',...      'measurements. The red circle represents the starting point ',...      'of the object.']);disp(' ');fprintf('Filtering with KF...');plot(X_r(1,:),X_r(2,:),Y(1,:),Y(2,:),'.',X_r(1,1),...     X_r(2,1),'ro','MarkerSize',12);legend('Real trajectory', 'Measurements');title('Position');% Uncomment if you want to save an image% print -dpsc demo1_f1.ps% Initial guesses for the state mean and covariance.m = [0 0 0 0 0 0]';P = diag([0.1 0.1 0.1 0.1 0.5 0.5]);%% Space for the estimates.MM = zeros(size(m,1), size(Y,2));PP = zeros(size(m,1), size(m,1), size(Y,2));% Filtering steps.for i = 1:size(Y,2)   [m,P] = kf_predict(m,P,A,Q);   [m,P] = kf_update(m,P,Y(:,i),H,R);   MM(:,i) = m;   PP(:,:,i) = P;end% Smoothing step.[SM,SP] = rts_smooth(MM,PP,A,Q);[SM2,SP2] = tf_smooth(MM,PP,Y,A,Q,H,R,1);fprintf('ready.\n');disp(' ');disp('<push any button to see the results>');pausesubplot(1,2,1);plot(X_r(1,:), X_r(2,:),'--', MM(1,:), MM(2,:),X_r(1,1),X_r(2,1),...     'o','MarkerSize',12)legend('Real trajectory', 'Filtered');title('Position estimation with Kalman filter.');xlabel('x');ylabel('y');subplot(1,2,2);plot(X_r(3,:), X_r(4,:),'--', MM(3,:), MM(4,:),X_r(3,1),...     X_r(4,1),'ro','MarkerSize',12);legend('Real velocity', 'Filtered');title('Velocity estimation with Kalman filter.');xlabel('x^.');ylabel('y^.');% Uncomment if you want to save an image% print -dpsc demo1_f2.psclc; disp(['The filtering results are displayed now. In the left panel the ',...      'estimated path is shown, and, for comparison, in the right panel ',...      'the estimated velocity is shown.']);disp(' ')disp('<push any key to see the smoothing results of a RTS smoother>');pausesubplot(1,2,1);plot(X_r(1,:), X_r(2,:),'--', SM(1,:), SM(2,:),X_r(1,1),...     X_r(2,1),'ro','MarkerSize',12);legend('Real trajectory', 'Smoothed');title('Position estimation with RTS smoother.');xlabel('x');ylabel('y');subplot(1,2,2);plot(X_r(3,:), X_r(4,:),'--', SM(3,:), SM(4,:),X_r(3,1),...     X_r(4,1),'ro','MarkerSize',12);legend('Real velocity', 'Smoothed');title('Velocity estimation with RTS smoother.');xlabel('x^.');ylabel('y^.');% Uncomment if you want to save an image% print -dpsc demo1_f3.psclc; disp(['The smoothing results are displayed now. In the left panel the ',...      'estimated path is shown, and, for comparison, in the right panel ',...      'the estimated velocity is shown.']);disp(' ')disp('<push any key to see the filtering results sequentially>');pausesubplot(1,2,1);plot(X_r(1,:), X_r(2,:),'--', SM2(1,:), SM2(2,:),X_r(1,1),...     X_r(2,1),'ro','MarkerSize',12);legend('Real trajectory', 'Smoothed');title('Position estimation with TF smoother.');xlabel('x');ylabel('y');subplot(1,2,2);plot(X_r(3,:), X_r(4,:),'--', SM2(3,:), SM2(4,:),X_r(3,1),...     X_r(4,1),'ro','MarkerSize',12);legend('Real velocity', 'Smoothed');title('Velocity estimation with TF smoother.');xlabel('x^.');ylabel('y^.');% Track and animate the filtering result. clcdisp(['Filtering result is now displayed sequentially on ',...     'every time step.']);disp(' ');disp(['The observations are displayed as green dots and ',...     'the real signal as solid blue line. The filtering ',...     'result of previous steps is plotted as dashed black ',...     'line. The covariance in each step is displayed as a ',...     'green ellipse around the mean (black circle) on each ',...     'step. The predicted position on next step is displayed ',...     'as a red circle']);disp(' ');disp('<push any key to proceed to next step>');clfEST = [];for k=1:size(Y,2)    M = MM(:,k);      P = PP(:,:,k);    EST = [EST M];    M_pred = kf_predict(M,P,A,Q);        % Confidence ellipse    tt = (0:0.01:1)*2*pi;    cc = repmat(M(1:2),1,length(tt)) + ...	 2*chol(P(1:2,1:2))'*[cos(tt);sin(tt)];    % Animate    plot(X_r(1,:),X_r(2,:),'-',...         Y(1,:), Y(2,:), '.',...         M(1),M(2),'ko',...         M_pred(1),M_pred(2),'ro',...         EST(1,:),EST(2,:),'k--',...	 cc(1,:),cc(2,:),'g-');    drawnow;    pause;end% Smoothing result.clf; clc;disp(['Smoothing (using RTS smoother) result is now displayed ',...     'sequentially on every time step in reverse order.']);disp(' ');disp(['The observations are displayed as green dots and the ',...     'real signal as solid blue line. The smoothing result ',...     'of previous steps is plotted as dashed black line.',...     'The covariance in each step is displayed as a green',...     'ellipse around the mean (black circle) on each step.']);disp(' ');disp('<push any key to proceed to next step>');EST = [];for k=size(Y,2):-1:1    M = SM(:,k);      P = SP(:,:,k);    EST = [EST M];    % Confidence ellipse    tt = (0:0.01:1)*2*pi;    cc = repmat(M(1:2),1,length(tt)) + ...	 2*chol(P(1:2,1:2))'*[cos(tt);sin(tt)];    % Animate    len = 1.5;    plot(X_r(1,:),X_r(2,:),'-',...         Y(1,:),Y(2,:),'.',...                  M(1),M(2),'ko',...         EST(1,:),EST(2,:),'k--',...	 cc(1,:),cc(2,:),'g-');    drawnow;    pause;end% MSEs of position estimatesMSE_KF1 = mean((X_r(1,:)-MM(1,:)).^2);MSE_KF2 = mean((X_r(2,:)-MM(2,:)).^2);MSE_KF = 1/2*(MSE_KF1 + MSE_KF2);MSE_RTS1 = mean((X_r(1,:)-SM(1,:)).^2);MSE_RTS2 = mean((X_r(2,:)-SM(2,:)).^2);MSE_RTS = 1/2*(MSE_RTS1 + MSE_RTS2);MSE_TF1 = mean((X_r(1,:)-SM2(1,:)).^2);MSE_TF2 = mean((X_r(2,:)-SM2(2,:)).^2);MSE_TF = 1/2*(MSE_TF1 + MSE_TF2);clc;fprintf('Mean square errors of position estimates:\n');fprintf('KF-RMSE = %.4f\n',MSE_KF);fprintf('RTS-RMSE = %.4f\n',MSE_RTS);fprintf('TF-RMSE = %.4f\n\n',MSE_TF);

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品视频一区二区三区不卡| 精品在线你懂的| 在线观看欧美黄色| 一区二区三区中文字幕| 精品视频在线免费看| 日韩av中文字幕一区二区| 日韩视频一区二区三区| 国产成人免费视频| 亚洲欧洲精品成人久久奇米网| 一本久道中文字幕精品亚洲嫩| 亚洲一区二区三区四区五区黄| 欧美精品日韩精品| 国产一区二区三区免费看| 国产精品无码永久免费888| 91麻豆产精品久久久久久| 亚洲国产一区二区a毛片| 日韩视频在线永久播放| 成人av电影在线播放| 亚洲小说欧美激情另类| 日韩欧美高清一区| 91免费观看视频| 免费不卡在线观看| 国产欧美精品一区| 欧美狂野另类xxxxoooo| 国产精品一级黄| 亚洲自拍偷拍图区| 久久这里只有精品首页| 色丁香久综合在线久综合在线观看 | 一区二区不卡在线播放| 日韩午夜中文字幕| 99re6这里只有精品视频在线观看| 亚洲一区二区三区中文字幕| 精品国产凹凸成av人导航| www.欧美日韩国产在线| 蜜桃一区二区三区四区| 亚洲日本va午夜在线电影| 欧美一级久久久| 91色视频在线| 国产毛片精品视频| 午夜电影网一区| 亚洲人成亚洲人成在线观看图片 | 97久久精品人人爽人人爽蜜臀| 天使萌一区二区三区免费观看| 中文字幕第一区综合| 91麻豆精品91久久久久同性| 97久久精品人人做人人爽50路| 久久91精品久久久久久秒播 | 日韩va欧美va亚洲va久久| 国产精品色呦呦| 欧美成人女星排行榜| 色综合久久久久久久| 国产精品亚洲成人| 美腿丝袜亚洲三区| 五月天婷婷综合| 亚洲免费观看高清| 国产精品美女久久久久久| 亚洲精品在线观| 欧美一级淫片007| 欧美日韩免费高清一区色橹橹| 不卡高清视频专区| 成人性色生活片| 国产乱淫av一区二区三区| 捆绑调教一区二区三区| 日日噜噜夜夜狠狠视频欧美人 | 日本欧美肥老太交大片| 亚洲国产日韩综合久久精品| 亚洲欧美激情在线| 国产精品九色蝌蚪自拍| 中文在线免费一区三区高中清不卡| 精品福利一二区| 欧美电影免费观看高清完整版 | 99久久精品久久久久久清纯| 成人激情小说网站| 国产99久久久久| 成人性生交大片免费看中文| 国产激情一区二区三区| 国产乱妇无码大片在线观看| 国产老肥熟一区二区三区| 国产在线日韩欧美| 国产白丝精品91爽爽久久| 丁香另类激情小说| 成人美女视频在线看| 高清免费成人av| 99r精品视频| 日本伦理一区二区| 欧美日韩1区2区| 日韩一区二区三区av| 欧美成人伊人久久综合网| 日韩精品中文字幕在线不卡尤物 | 国产成a人亚洲| 91性感美女视频| 欧美又粗又大又爽| 欧美一区二区三区影视| 欧美精品一区二区三区在线播放 | 国产欧美一区二区精品性色超碰| 久久精品视频免费观看| 国产精品美女一区二区| 一区二区三区四区视频精品免费| 亚洲一区二区三区四区在线免费观看 | 中文字幕在线不卡一区| 亚洲精品成人精品456| 亚洲第一激情av| 激情深爱一区二区| 91在线观看视频| 欧美日韩国产首页在线观看| 欧美本精品男人aⅴ天堂| 国产免费观看久久| 亚洲chinese男男1069| 激情另类小说区图片区视频区| 风间由美一区二区三区在线观看| 日本韩国欧美在线| 欧美精品一区二区蜜臀亚洲| 亚洲欧美在线另类| 丝袜亚洲精品中文字幕一区| 国内成人自拍视频| 在线日韩国产精品| 欧美成人性福生活免费看| 亚洲天堂精品视频| 美女精品自拍一二三四| 9色porny自拍视频一区二区| 6080午夜不卡| 亚洲欧美怡红院| 九一九一国产精品| 久久国产精品无码网站| a级精品国产片在线观看| 91麻豆精品国产91久久久久久久久 | 日本欧美韩国一区三区| av动漫一区二区| 欧美xxx久久| 亚洲福利电影网| 成人动漫av在线| 日韩欧美国产一区二区在线播放 | 精品成人在线观看| 亚洲永久免费av| 成人毛片在线观看| 日韩女优电影在线观看| 亚洲大尺度视频在线观看| 国产成人综合在线| 日韩一区二区三区四区五区六区| 亚洲欧美日韩电影| 成人av中文字幕| 久久精品一区二区| 麻豆一区二区在线| 91精品国产欧美一区二区18| 亚洲精品第1页| 成人h动漫精品| 久久精品人人爽人人爽| 久久精品国产精品亚洲综合| 欧美调教femdomvk| 亚洲三级免费观看| 大陆成人av片| 2020日本不卡一区二区视频| 日本成人中文字幕| 欧美精品vⅰdeose4hd| 亚洲午夜电影在线观看| 色婷婷综合久久久中文一区二区| 国产午夜精品一区二区| 国产福利91精品一区二区三区| 日韩欧美亚洲一区二区| 五月天久久比比资源色| 欧美日韩一区二区三区不卡 | 欧美日韩在线播| 亚洲宅男天堂在线观看无病毒| 色婷婷精品久久二区二区蜜臀av| 国产精品丝袜一区| 国产风韵犹存在线视精品| 久久精品网站免费观看| 国产成人精品亚洲午夜麻豆| 国产亚洲成年网址在线观看| 国产麻豆午夜三级精品| 久久久一区二区| 成人一区在线看| 国产精品美女久久久久久久久| 成人av在线资源网站| 亚洲人成亚洲人成在线观看图片 | 麻豆国产一区二区| 精品久久一区二区| 国产剧情一区二区| 中文字幕av资源一区| 99国产精品国产精品久久| 一区二区三区高清在线| 欧美三片在线视频观看| 奇米影视一区二区三区小说| 欧美精品一区二区三区一线天视频| 国产精品88av| 亚洲精品视频免费看| 欧美日韩午夜影院| 另类成人小视频在线| 国产视频不卡一区| 色美美综合视频| 免费成人美女在线观看| 国产亚洲欧美日韩日本| 99久久国产综合色|国产精品| 亚洲精品综合在线| 51午夜精品国产| 福利一区在线观看| 亚洲成人av资源| 国产喂奶挤奶一区二区三区| 色综合视频在线观看| 日本伊人色综合网|