?? markettrain.java
字號:
package org.encog.examples.neural.predict.market;
import org.encog.neural.activation.ActivationTANH;
import org.encog.neural.data.NeuralDataSet;
import org.encog.neural.data.basic.BasicNeuralDataSet;
import org.encog.neural.networks.BasicNetwork;
import org.encog.neural.networks.Train;
import org.encog.neural.networks.layers.FeedforwardLayer;
import org.encog.neural.networks.training.backpropagation.Backpropagation;
import org.encog.neural.persist.EncogPersistedCollection;
public class MarketTrain {
public final static int TRAINING_MINUTES = 1440;
public static void main(String args[])
{
EncogPersistedCollection encog = new EncogPersistedCollection();
encog.load("marketdata.eg");
NeuralDataSet trainingSet = (NeuralDataSet) encog.find("market");
/*BasicNetwork network = new BasicNetwork();
network.addLayer(new FeedforwardLayer(new ActivationTANH(),trainingSet.getInputSize()));
network.addLayer(new FeedforwardLayer(new ActivationTANH(),60));
network.addLayer(new FeedforwardLayer(new ActivationTANH(),trainingSet.getIdealSize()));
network.reset();
*/
BasicNetwork network = (BasicNetwork) encog.find("market-network");
// train the neural network
final Train train = new Backpropagation(network, trainingSet, 0.00001, 0.1);
int epoch = 1;
long startTime = System.currentTimeMillis();
int left = 0;
do {
int running = (int)((System.currentTimeMillis()-startTime)/60000);
left = MarketTrain.TRAINING_MINUTES - running;
train.iteration();
System.out
.println("Epoch #" + epoch + " Error:" + (train.getError()*100.0)+"%,"
+" Time Left: " + left + " Minutes");
epoch++;
} while ((left>=0) && (train.getError() > 0.001));
//encog.delete("market-network");
network.setName("market-network");
network.setDescription("Trained neural network");
encog.add(network);
encog.save("marketdata.eg");
}
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -