?? xorgenetic.java
字號:
/* * Encog Neural Network and Bot Library for Java * http://www.heatonresearch.com/encog/ * http://code.google.com/p/encog-java/ * * Copyright 2008, Heaton Research Inc., and individual contributors. * See the copyright.txt in the distribution for a full listing of * individual contributors. * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this software; if not, write to the Free * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA, or see the FSF site: http://www.fsf.org. */package org.encog.examples.neural.xorgenetic;import org.encog.neural.data.NeuralData;import org.encog.neural.data.NeuralDataPair;import org.encog.neural.data.NeuralDataSet;import org.encog.neural.data.basic.BasicNeuralDataSet;import org.encog.neural.networks.BasicNetwork;import org.encog.neural.networks.layers.FeedforwardLayer;import org.encog.neural.networks.training.genetic.TrainingSetNeuralGeneticAlgorithm;/** * XOR-Genetic: This example solves the classic XOR operator neural * network problem. However, it uses a genetic algorithm, rather than * backpropagation. * * @author $Author$ * @version $Revision$ */public class XorGenetic { public static double XOR_INPUT[][] = { { 0.0, 0.0 }, { 1.0, 0.0 }, { 0.0, 1.0 }, { 1.0, 1.0 } }; public static double XOR_IDEAL[][] = { { 0.0 }, { 1.0 }, { 1.0 }, { 0.0 } }; public static void main(final String args[]) { BasicNetwork network = new BasicNetwork(); network.addLayer(new FeedforwardLayer(2)); network.addLayer(new FeedforwardLayer(3)); network.addLayer(new FeedforwardLayer(1)); network.reset(); NeuralDataSet trainingSet = new BasicNeuralDataSet(XOR_INPUT, XOR_IDEAL); // train the neural network final TrainingSetNeuralGeneticAlgorithm train = new TrainingSetNeuralGeneticAlgorithm( network, true, trainingSet, 5000, 0.1, 0.25); int epoch = 1; do { train.iteration(); System.out .println("Epoch #" + epoch + " Error:" + train.getError()); epoch++; } while ((epoch < 5000) && (train.getError() > 0.001)); network = train.getNetwork(); // test the neural network System.out.println("Neural Network Results:"); for(NeuralDataPair pair: trainingSet ) { final NeuralData output = network.compute(pair.getInput()); System.out.println(pair.getInput().getData(0) + "," + pair.getInput().getData(1) + ", actual=" + output.getData(0) + ",ideal=" + pair.getIdeal().getData(0)); } }}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -