?? activationlinear.java
字號:
/* * Encog Neural Network and Bot Library for Java v1.x * http://www.heatonresearch.com/encog/ * http://code.google.com/p/encog-java/ * * Copyright 2008, Heaton Research Inc., and individual contributors. * See the copyright.txt in the distribution for a full listing of * individual contributors. * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this software; if not, write to the Free * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA, or see the FSF site: http://www.fsf.org. */package org.encog.neural.activation;import org.encog.neural.NeuralNetworkError;import org.encog.neural.persist.Persistor;import org.encog.neural.persist.persistors.ActivationLinearPersistor;/** * ActivationLinear: The Linear layer is really not an activation function at * all. The input is simply passed on, unmodified, to the output. This * activation function is primarily theoretical and of little actual use. * Usually an activation function that scales between 0 and 1 or -1 and 1 should * be used. */public class ActivationLinear implements ActivationFunction { /** * Serial id for this class. */ private static final long serialVersionUID = -5356580554235104944L; /** * The description for this object. */ private String description; /** * The name of this object. */ private String name; /** * A threshold function for a neural network. * * @param d * The input to the function. * @return The output from the function. */ public double activationFunction(final double d) { return d; } /** * Create a persistor for this object. * @return The new persistor. */ public Persistor createPersistor() { return new ActivationLinearPersistor(); } /** * Some training methods require the derivative. * * @param d * The input. * @return The output. */ public double derivativeFunction(final double d) { throw new NeuralNetworkError( "Can't use the linear activation function " + "where a derivative is required."); } /** * @return the description */ public String getDescription() { return this.description; } /** * @return the name */ public String getName() { return this.name; } /** * @param description * the description to set */ public void setDescription(final String description) { this.description = description; } /** * @param name * the name to set */ public void setName(final String name) { this.name = name; }}
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -