?? crypto.h
字號:
#ifndef _LINUX_CRYPTO_H_#define _LINUX_CRYPTO_H_/* * include/linux/crypto.h * * Written by Alexander Kjeldaas <astor@fast.no> 1998-10-13 * * Copyright 1998 by Alexander Kjeldaas. This code is licensed under * an X11-like license. See LICENSE.crypto for details. * *//* * API version tag */#define CRYPTO_API_VERSION_CODE 0x000100#define CRYPTO_API_VERSION(major,minor,micro) \ (((major) << 16) + ((minor) << 8) + (micro))/* some id constants */#define TRANSFORM_DIGEST 0#define TRANSFORM_CIPHER 1#define MAX_TRANSFORM 2#define CIPHER_MODES 0xFFFF0000 /* used to mask the mode *\ * part of the cipher id */#define CIPHER_MODE_ECB 0x00000000#define CIPHER_MODE_CBC 0x00010000#define CIPHER_MODE_CFB 0x00020000#define CIPHER_MODE_CTR 0x00040000#define CIPHER_MODE_RTC 0x00080000 /* Allowed keysizes: This is just a set of commonly found values. If * you need additional ones, you can place them here. Note that * CIPHER_KEY_ANY really means _any_ key length (that is a multiple of * 8 bits, just limited by MAX_KEY_SIZE*32. This is not important now, * but might become so if we choose to support keylengths greater than * 256 bits. There are many ciphers that can take keys that are longer * (e.g. blowfish: 448 bits). If you want to say all key lengths up to * 256, play safe and use 0xFFFFFFFF-1 as keysize_mask. * CIPHER_KEYSIZE_NONE means that the cipher does not expect a key. It * is only used for 'none' encryption. */#define CIPHER_KEYSIZE_ANY 0xFFFFFFFF#define CIPHER_KEYSIZE_NONE 0x00000000#define CIPHER_KEYSIZE_40 0x00000010#define CIPHER_KEYSIZE_56 0x00000040#define CIPHER_KEYSIZE_64 0x00000080#define CIPHER_KEYSIZE_80 0x00000200#define CIPHER_KEYSIZE_96 0x00000800#define CIPHER_KEYSIZE_112 0x00002000#define CIPHER_KEYSIZE_128 0x00008000#define CIPHER_KEYSIZE_160 0x00080000#define CIPHER_KEYSIZE_168 0x00100000#define CIPHER_KEYSIZE_192 0x00800000#define CIPHER_KEYSIZE_256 0x80000000/* * ioctl's for cryptoloop.c */#define CRYPTOLOOP_SET_DEBUG 0X4CFD#define CRYPTOLOOP_SET_BLKSIZE 0X4CFC#ifdef __KERNEL__#include <linux/version.h>#include <linux/list.h>#include <linux/kernel.h>#include <linux/proc_fs.h>#include <linux/spinlock.h>#include <asm/page.h>#include <asm/semaphore.h>#if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0)# ifndef __exit# define __exit# endif#endif/* A transform group is a group of transforms that behave in a similar * fashion */struct transform_group { int tg_id; char *tg_name; /* "cipher" or "digest" */ rwlock_t tg_lock; struct list_head *tg_head;#ifdef CONFIG_PROC_FS struct proc_dir_entry *tg_proc_parent_dir; int (*read_proc)(char *page, char **start, off_t off, int count, int *eof, void *data);#endif};/* A transform is something that can be found by id or name. Ciphers and digests are types of transforms. */struct transform_implementation { struct list_head t_list; int t_flags; char *t_name; int t_atomicapi; struct transform_group *t_group;#ifdef CONFIG_PROC_FS /* keep track of the allocated proc_dir_entry */ struct proc_dir_entry *t_proc;#endif};/* Cipher data structures */struct cipher_context;typedef int (*cipher_trans_proc)(struct cipher_context *cx, const u8 *in, u8 *out, int size);typedef int (*cipher_trans_proc_iv)(struct cipher_context *cx, const u8 *in, u8 *out, int size, const u8 *iv);struct cipher_implementation { struct transform_implementation trans; int blocksize; /* in bytes */ int ivsize; /* in bytes */ int key_schedule_size; /* in bytes. 0 if the schedule size is variable. */ u32 key_size_mask; /* bit 0 set = 8 bit, ... , * bit 31 set = 256 bit */ /* * Encrypt the plaintext pointed to by "in". Write output to * "out". Size of plaintext is "size". Output buffer must be * able to hold "size" bytes plus padding necessary to make it * a multiple of the cipher blocksize. size <= 0 is * undefined. Returns 0 on success, non-zero on * failure. * * encrypt - Function might sleep. This function will * always exist. * encrypt_atomic - Will never sleep + always SW implementation. * This function will exist if atomicapi==1 was * set in find_cipher_by_name where this * cipher_implementation was returned. */ cipher_trans_proc encrypt; cipher_trans_proc encrypt_atomic; cipher_trans_proc_iv encrypt_iv; cipher_trans_proc_iv encrypt_atomic_iv; /* * Decrypt the ciphertext pointed to by "in". Write output to * "out". Size of plaintext is "size". Input buffer is "size" * bytes plus padding necessary to make it a multiple of the * cipher blocksize. size <= 0 is undefined. Returns 0 on * success, non-zero on failure. * */ cipher_trans_proc decrypt; cipher_trans_proc decrypt_atomic; cipher_trans_proc_iv decrypt_iv; cipher_trans_proc_iv decrypt_atomic_iv; /* * */ int (*set_key)(struct cipher_context *cx, const u8 *key, int key_len); int (*set_key_atomic)(struct cipher_context *cx, const u8 *key, int key_len); /* The following functions are optional. Most ciphers will * not need to specify them, and a default implementation will * be used. */ /* Realloc a cipher_context that can hold the key schedule for * a given key. If no cipher_context is given, allocate a new * cipher_context. */ struct cipher_context * (*realloc_context)(struct cipher_context *old_cx, struct cipher_implementation *ci, int max_key_len); void (*wipe_context)(struct cipher_context *cx); void (*free_context)(struct cipher_context *cx); /* lock and unlock manage the module use counts */ void (*lock)(void); void (*unlock)(void); /* The following functions are used by software * implementations that wish to provide a single function that * implements atomic and non-atomic versions of encrypt, * decrypt, and set_key. If these functions are set, * register_cipher will provide generic implementations of * encrypt*, decrypt*, and set_key*. However these functions * should not be called directly by users since they will only * exist for software-based cipher implementations. */ int (*_encrypt) (struct cipher_context *cx, const u8 *in, u8 *out, int size, int atomic, const u8 *iv); int (*_decrypt)(struct cipher_context *cx, const u8 *in, u8 *out, int size, int atomic, const u8 *iv); int (*_set_key)(struct cipher_context *cx, const u8 *key, int key_len, int atomic);};#define MAX_IV_SIZE 32 /* 32 byte - 256 bit */struct cipher_context { struct cipher_implementation *ci; int may_sleep; /* cipher implementation (sw) might sleep */ int keyinfo_size; /* in bytes - usually equal to * ci->key_schedule_size. */ u32 *keyinfo; int key_length; /* in bytes */ u8 iv[MAX_IV_SIZE]; /* static IV */};/* Digest data structures */struct digest_context;struct digest_implementation { struct transform_implementation trans; int blocksize; /* in bytes */ int working_size; /* in bytes */ int (*open)(struct digest_context *cx); int (*open_atomic)(struct digest_context *cx); int (*update)(struct digest_context *cx, const u8 *in, int size); int (*update_atomic)(struct digest_context *cx, const u8 *in, int size); int (*digest)(struct digest_context *cx, u8 *out); int (*digest_atomic)(struct digest_context *cx, u8 *out); int (*close)(struct digest_context *cx, u8 *out); int (*close_atomic)(struct digest_context *cx, u8 *out); int (*hmac)(struct digest_context *cx, u8 *key, int key_len, u8 *in, int size, u8 *hmac); int (*hmac_atomic)(struct digest_context *cx, u8 *key, int key_len, u8 *in, int size, u8 *hmac); struct digest_context *(*realloc_context)(struct digest_context *old_cx, struct digest_implementation *ci); void (*free_context)(struct digest_context *cx); /* lock and unlock manage the module use counts */ void (*lock)(void); void (*unlock)(void); /* hook for software implemented digests */ int (*_open)(struct digest_context *cx, int atomic); int (*_update)(struct digest_context *cx, const u8 *in, int size, int atomic); int (*_digest)(struct digest_context *cx, u8 *out, int atomic); int (*_close)(struct digest_context *cx, u8 *out, int atomic); int (*_hmac)(struct digest_context *cx, u8 *key, int key_len, u8 *in, int size, u8 *hmac, int atomic);};struct digest_context { struct digest_implementation *di; u32 *digest_info;};struct transform_implementation *find_transform_by_name(const char *name, int tgroup, int atomicapi);static inline struct cipher_implementation *find_cipher_by_name(const char *name, int atomicapi){ return (struct cipher_implementation *) find_transform_by_name(name, TRANSFORM_CIPHER, atomicapi);} static inline struct digest_implementation *find_digest_by_name(const char *name, int atomicapi){ return (struct digest_implementation *) find_transform_by_name(name, TRANSFORM_DIGEST, atomicapi);}int register_transform(struct transform_implementation *ti, int tgroup);int register_cipher(struct cipher_implementation *ci);int register_digest(struct digest_implementation *di);int unregister_transform(struct transform_implementation *ti);int unregister_cipher(struct cipher_implementation *ci);int unregister_digest(struct digest_implementation *ci); /* Utility macros */#define INIT_CIPHER_BLKOPS(name) \ _encrypt: name##_encrypt, \ _decrypt: name##_decrypt#define INIT_CIPHER_OPS(name) \ _set_key: name##_set_key, \ lock: name##_lock, \ unlock: name##_unlock#define INIT_DIGEST_OPS(name) \ _open: name##_open, \ _update: name##_update, \ _digest: name##_digest, \ _close: name##_close, \ _hmac: name##_hmac, \ lock: name##_lock, \ unlock: name##_unlock/* inline PKCS padding functions */static inline int pkcspad_inplace(u8 *buf, u32 buf_len, u32 payload_len) { int i; u8 P = (u8)((buf_len - payload_len) & 0xff); for (i = payload_len; i < buf_len; i++) { buf[i] = P; } return i;}static inline int pkcspad(u8 *out, const u8 *buf, u32 buf_len, u32 payload_len) { int i; u8 P = (u8)((buf_len - payload_len) & 0xff); memcpy(out, buf, payload_len); for (i = payload_len; i < buf_len; i++) { out[i] = P; } return i;}#endif /* __KERNEL__ */#endif /* _LINUX_CRYPTO_H_ *//* eof */
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -