?? iwa1.m
字號(hào):
function x = iwa1(c,pat,tp)% iwa1 - inverse wave atom transform% -----------------% INPUT% --% c is a cell array which contains the wave atom coefficients. If% tp=='ortho', then c{j}{m}(n) is the coefficient at scale j, frequency% index m and spatial index n If tp=='complex', then c{j,1}c{j}{m}(n)% and c{j,2}c{j}{m}(n) are the coefficients at scale j, frequency index% m and spatial index n.% --% pat specifies the type of frequency partition which satsifies% parabolic scaling relationship. pat can either be 'p' or 'q'.% --% tp is the type of tranform.% 'ortho': orthobasis% 'complex': complex-valued frame with redunancy 2.% -----------------% OUTPUT% --% x is a real N-by-1 vector. N is a power of 2.% -----------------% Written by Lexing Ying and Laurent Demanet, 2007 if( ismember(tp, {'ortho','directional','complex'})==0 | ismember(pat, {'p','q','u'})==0 ) error('wrong'); end if(strcmp(tp, 'ortho')==1) %--------------------------------------------------------- T = 0; for s=1:length(c) nw = length(c{s}); for I=1:nw T = T + prod(size(c{s}{I})); end end N = T; H = N/2; lst = freq_pat(H,pat); A = N; f = zeros(A,1); %------------------ for s=1:length(lst) nw = length(lst{s}); for I=0:nw-1 if(~isempty(c{s}{I+1})) B = 2^(s-1); D = 2*B; Ict = I*B; if(mod(I,2)==0) Ifm = Ict-2/3*B; Ito = Ict+4/3*B; else Ifm = Ict-1/3*B; Ito = Ict+5/3*B; end res = fft(c{s}{I+1}) / sqrt(prod(size(c{s}{I+1}))); for id=0:1 if(id==0) Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); else Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); end f(mod(Idx,A)+1) = f(mod(Idx,A)+1) + ( Icf.' ) .* res(mod(Idx,D)+1); end end end end %------------------ x = ifft(f) * sqrt(prod(size(f))); elseif(strcmp(tp, 'directional')==1) %--------------------------------------------------------- error('wrong argument for tp'); elseif(strcmp(tp, 'complex')==1) %--------------------------------------------------------- c1 = c(:,1); c2 = c(:,2); T = 0; for s=1:length(c1) nw = length(c1{s}); for I=1:nw T = T + prod(size(c1{s}{I})); end end N = T; H = N/2; lst = freq_pat(H,pat); A = N; f = zeros(A,1); %------------------ for s=1:length(lst) nw = length(lst{s}); for I=0:nw-1 if(~isempty(c1{s}{I+1})) B = 2^(s-1); D = 2*B; Ict = I*B; if(mod(I,2)==0) Ifm = Ict-2/3*B; Ito = Ict+4/3*B; else Ifm = Ict-1/3*B; Ito = Ict+5/3*B; end Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); res = fft(c1{s}{I+1}) / sqrt(prod(size(c1{s}{I+1}))); f(mod(Idx,A)+1) = f(mod(Idx,A)+1) + ( Icf.' ) .* res(mod(Idx,D)+1); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); res = fft(c2{s}{I+1}) / sqrt(prod(size(c2{s}{I+1}))); f(mod(Idx,A)+1) = f(mod(Idx,A)+1) + ( Icf.' ) .* res(mod(Idx,D)+1); end end end %------------------ x = ifft(f) * sqrt(prod(size(f))); end
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -