?? pwa2sym.m
字號:
function [a1,a2,ww,b1,b2,zz] = pwa2sym(N,pat,tp)% pwa2sym - get position information% -----------------% INPUT% --% N -- size% --% pat specifies the type of frequency partition which satsifies% parabolic scaling relationship. pat can either be 'p' or 'q'.% --% tp is the type of tranform.% 'ortho': orthobasis% -----------------% OUTPUT% --% a1,a2 are arrays that contain the centers of the wave atoms% in spatial domain.% --% ww is an array that contains the widths of the wave atoms% in spatial domain.% --% b1,b2 are arrays that contain the centers of the wave atoms% in frequency domain.% --% zz is an array that contains the widths of the wave atoms% in frequency domain.% --% -----------------% Written by Lexing Ying and Laurent Demanet, 2007 if( ismember(tp, {'ortho','directional','complex'})==0 | ismember(pat, {'p','q','u'})==0 ) error('wrong'); end [x1,x2,w,k1,k2,z] = pwa2(N,pat,tp); a1 = zeros(N,N); a2 = zeros(N,N); ww = zeros(N,N); b1 = zeros(N,N); b2 = zeros(N,N); zz = zeros(N,N); for s=1:length(x1) D = 2^s; nw = length(x1{s}); for I=0:nw-1 for J=0:nw-1 if(~isempty(x1{s}{I+1,J+1})) a1( I*D+[1:D], J*D+[1:D] ) = x1{s}{I+1,J+1}; a2( I*D+[1:D], J*D+[1:D] ) = x2{s}{I+1,J+1}; ww( I*D+[1:D], J*D+[1:D] ) = w{ s}{I+1,J+1}; b1( I*D+[1:D], J*D+[1:D] ) = k1{s}{I+1,J+1}; b2( I*D+[1:D], J*D+[1:D] ) = k2{s}{I+1,J+1}; zz( I*D+[1:D], J*D+[1:D] ) = z{ s}{I+1,J+1}; end end end end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -