亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.html

?? All the tool for build a network able to reconize any shapes. Very complete, a good base for anythi
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
                    previously saved weights, saving current weights, feeding 
                    forward, calculating errors and for all kind of training 
                    methods. It has a sub class called 'Layer'. This simply 
                    represents a layer and facilitates calculations during feed 
                    forward and back propagation.<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="16"></a>What is the function of the class 'Pattern'?</b></u><br>
                    Represents a single training pattern including input data 
                    and target data. If you use PatternSet class, you don't have 
                    to deal with this class. A PatternSet class includes one or 
                    more pattern objects.<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="17"></a>What is the function of the class 'PatternSet'?</b></u><br>
                    Represents a set of patterns to be used during training. You 
                    can use all patterns for training or you can spare some part 
                    of it for cross validation and testing.<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="18"></a>What is the function of the class 'Randomizer'?</b></u><br>
                    It generally coordinates random number generation. You can 
                    create an instance using a seed ( the code will produce the 
                    same sequence of random values each time you run the code ) 
                    or without seed (the code will use system clock, the 
                    sequence will not be the same).<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="19"></a>What is the function of the class 'LineReader'?</b></u><br>
                    This class facilitates the file reading process. We use it 
                    for reading pattern files, configuration files, weight 
                    files.<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="20"></a>What is 'cross validation data'?</b></u><br>
                    Neural networks can be over trained to the point where 
                    performance on new data actually deteriorates. Roughly 
                    speaking, overtraining results in a network that memorizes 
                    the individual exemplars, rather than trends in the data set 
                    as a whole. Cross validation is a process whereby part of 
                    the data set is set aside for the purpose of monitoring the 
                    training process, to guard against overtraining. (*)<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="21"></a>What is 'test data'?</b></u><br>
                    The testing set is used to test the performance of the 
                    network. Once the network has been trained, the weights are 
                    then frozen, the testing set is fed into the network, and 
                    the network output is compared with the desired output. (*)<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="22"></a>What is the function of the methods 'CrossValErrorRatio' 
                    and 'TestValErrorRatio'?</b></u><br>
                    Using these methods you can get a linear figure of what the 
                    error level is, based on cross validation data or test data. 
                    Since it is divided by average deviation, it is independent 
                    of the scale of the outputs.<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="23"></a>Can I feed my own cross validation and test patterns?</b></u><br>
                    Yes you can. If you don't want patterns to be selected 
                    randomly and wish to create your own set of cross validation 
                    patterns out of your own file, you have to create a 
                    PatternSet object using '1' as ratiocrossval and '0' for 
                    other two ratios. Then you can use 
                    CrossValErrorRatio(yourpatternset) method to calculate the 
                    error. The same is true for test data (see example 2).<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="24"></a>How can I set random weights after I create a net?</b></u><br>
                    After you use any of the constructors and create a net, all 
                    weights will be random values uniformly distributed between 
                    -1 and 1. They will remain so unless you train the network 
                    or load weights from a file.<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="25"></a>What is a configuration file and what is the format of 
                    a configuration file?</b></u><br>
                    A configuration file is a saved configuration of a net. It 
                    is a text file, so it can be edited manually using a basic 
                    text editor. It includes the topology of the net as well as 
                    detailed information about units. It doesn't include 
                    information about weights though.<br>
                    Below is a configuration file taken from example 1.<br>
                    <br>
                    // First of all, we determine total number of units in the 
                    net.<br>
                    #neurons;5<br>
                    // Then we describe input units. There will be three fields:<br>
                    // type (for input units this will be 'i'); ID (a unique 
                    number for each unit);<br>
                    // layer (inputs are all in layer 0)<br>
                    i;0;0<br>
                    i;1;0<br>
                    // Now we describe hidden layers.<br>
                    // type;ID;layer;flatness;axon family;momentum;learning rate<br>
                    // type,ID,layer (all of those have the same meaning as in 
                    input layer)<br>
                    // type should be 'n' for hidden and output layers.<br>
                    // flatness: how flat is the sigmoid curve? The bigger it 
                    is, the flatter is the curve.<br>
                    // axon family: 't' tanh, 'g' logistic, 'l' linear.<br>
                    // momentum: momentum rate.<br>
                    // learning rate: (see 'Can I use different learning rates 
                    for each layer?')<br>
                    n;2;1;1;t;0.5;1<br>
                    n;3;1;1;t;0.5;1<br>
                    // output layer (same format as hidden layers)<br>
                    n;4;3;1;l;0.5;1<br>
                    // And now we describe synapses. For each connection between 
                    units,<br>
                    // there will be a line here.<br>
                    // First determine the number of synapses.<br>
                    #synapses;6<br>
                    // type; ID; source unit; target unit<br>
                    // type will be 's' for all synapses.<br>
                    // ID is a unique number for each synapse)<br>
                    // source unit is the ID of the source unit of this synapse.<br>
                    // target unit is the ID of the target unit of this synapse.<br>
                    s;0;0;2<br>
                    s;1;0;3<br>
                    s;2;1;3<br>
                    s;3;2;4<br>
                    s;4;3;4<br>
                    s;5;1;4<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="26"></a>What is a pattern file and what is the format of a 
                    pattern file?</b></u><br>
                    A pattern file is a text file and it contains training 
                    patterns. If you use the constructor in PatternSet class, it 
                    will read values from a pattern file (examples 1 and 2). The 
                    values in a pattern file should be separated by semicolons 
                    ';'. This is the format of a 'csv' file. You can easily 
                    create one using MS Excel for example. A line in a pattern 
                    file includes input value(s) and target value(s).<br>
                    The line below was taken from 'example1.csv'. Here, first 
                    two values are input values, the last one is a target value.<br>
                    -0.787338;-0.028483;-0.815821<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="27"></a>What is a weight file and what is the format of a 
                    weight file?</b></u><br>
                    The weights of a net are stored in a weight file. This is a 
                    text file. 'LoadWeights' and 'SaveWeights' methods in the 
                    class 'NeuralNet' loads and saves network weights (see 
                    examples). A weight file contains semicolon ';' separated 
                    values. Each line has three values: Type, ID, weight value.<br>
                    'Type' determines whether this is a synapse weight or a 
                    threshold. It is 'w' for the first and 't' for the second.<br>
                    'ID' determines the ID of the synapse in question (if this 
                    is a synapse weight) or the ID of the unit (if this is a 
                    threshold)<br>
                    'weight value' is the weight itself.<br>
                    Below is an example of this.<br>
                    w; 0; 1.9678931117918397<br>
                    w; 1; 0.13815102250339562<br>
                    w; 2; -2.0168124457485814<br>
                    t; 7; 0.4776425534517153<br>
                    t; 8; 1.4714782668522086<br>
                    t; 9; 0.13046564839824953<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <b><u><a name="28"></a>Do you give the source code for free?</u></b><br>
                    Yes. But please contact me if you wish to use it entirely or 
                    partially in any kind of project so that I can reference it. 
                    Please don't delete the top lines of the codes so that other 
                    people can reach that information too.<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="29"></a>How can I get more detailed documentation?</b></u><br>
                    You can only find it with the comments in the code or you 
                    can ask me.<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="30"></a>In which development environment has this package been 
                    tested?</b></u><br>
                    It is tested in Sun Java 2 SDK 1.4.0<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="31"></a>How can I compile the code?</b></u><br>
                    I guess that you can compile using any java compiler. I 
                    personally use command line interface using Windows 2000 and 
                    Sun Java SDK 1.4.0. All you have to do is to uncompress all 
                    the files in the same directory and type for example:<br>
                    javac example1.java <br>
                    in the command line. Note that this is the way it works in 
                    Microsoft based operating systems and that I don't have 
                    experience on others. However, I don't think that there will 
                    be much difference, since we are talking about command line 
                    interfaces.<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="32"></a>Error management in this package is not coded 
                    properly. Are you aware of it?</b></u><br>
                    Yes I am. I am planning to revise them in the future. Until 
                    then please be careful when you determine parameters.<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="33"></a>Where can I find basic information about neural 
                    networks?</b></u><br>
                    You can try:<br>
                    http://www.shef.ac.uk/psychology/gurney/notes/contents.html<br>
                    ftp://ftp.sas.com/pub/neural/index.html<br>
                    http://directory.google.com/Top/Computers/Artificial_Intelligence/Neural_Networks/<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    <u><b><a name="34"></a>How can I learn Java?</b></u><br>
                    I would recommend http://java.sun.com. It contains a lot of 
                    information and an excellent java tutorial.<br>
                    <br>
                    <a href="#top">top</a><br>
                    <br>
                    (*) Taken from NeuroSolutions 4.20 (NeuroDimension Inc.) 
                    Help document.</font></td>
			</tr>
			<tr>
				<td align="left">
					<a href="index.html">Home</a></td>
			</tr>
			</table>
	      </center>
        </div>
	</body>
</html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
北条麻妃国产九九精品视频| 日韩电影在线免费| 精品国产一区二区三区四区四| 色欧美日韩亚洲| 欧美亚洲一区二区在线观看| 色94色欧美sute亚洲线路一ni| 99天天综合性| 色婷婷久久久亚洲一区二区三区| 91视视频在线直接观看在线看网页在线看| 国产精品综合一区二区三区| 国内精品免费**视频| 国产成人综合视频| 99国产精品久久久| 欧美日韩精品一区二区| 欧美一区二区视频网站| 欧美xxx久久| 国产精品丝袜在线| 亚洲人成精品久久久久| 亚洲成在人线在线播放| 久久精品国产成人一区二区三区| 国产精品资源在线观看| 99久久99久久精品免费看蜜桃| 色哟哟精品一区| 91精品国产免费| 国产欧美在线观看一区| 一区二区三区在线高清| 麻豆精品久久久| 北条麻妃一区二区三区| 欧美日韩高清一区二区不卡| 精品国产免费视频| 亚洲乱码中文字幕| 奇米综合一区二区三区精品视频| 成人亚洲一区二区一| 欧美日韩日日夜夜| 国产精品另类一区| 婷婷开心激情综合| 成人成人成人在线视频| 日韩欧美电影在线| 中文字幕日韩av资源站| 捆绑变态av一区二区三区| 成人小视频在线观看| 91.麻豆视频| 国产精品国产三级国产专播品爱网 | 亚洲精品国产一区二区精华液 | 亚洲欧美在线aaa| 视频一区视频二区中文字幕| 国产suv精品一区二区6| 91精品在线观看入口| 亚洲视频一区在线观看| 国产精品一线二线三线| 91精品免费在线| 亚洲品质自拍视频| 国产精品中文字幕日韩精品| 777欧美精品| 亚洲综合激情小说| 99免费精品在线| 国产欧美日韩中文久久| 老司机午夜精品| 91精品啪在线观看国产60岁| 一区二区三区在线观看网站| voyeur盗摄精品| 国产欧美日韩在线| 国产麻豆视频精品| 日韩欧美成人午夜| 日本aⅴ精品一区二区三区| 欧美午夜一区二区三区| 亚洲免费在线视频| 91美女片黄在线观看91美女| 国产精品伦一区| 9色porny自拍视频一区二区| 国产欧美一区二区精品婷婷| 韩日精品视频一区| 精品国产露脸精彩对白| 国产尤物一区二区在线| 欧美精品一区二| 国产一区二区三区| 国产亚洲视频系列| 成人一级片网址| 亚洲天堂网中文字| 在线观看亚洲精品视频| 亚洲福利一区二区| 911精品国产一区二区在线| 日韩电影一二三区| 精品999在线播放| 国产成人av资源| 日韩码欧中文字| 欧美亚洲一区二区三区四区| 午夜精品影院在线观看| 欧美一区二区网站| 国产精品一区二区久久精品爱涩| 国产三级欧美三级日产三级99 | 自拍偷拍亚洲欧美日韩| caoporen国产精品视频| 亚洲精品一二三| 欧美高清性hdvideosex| 日本亚洲三级在线| 国产情人综合久久777777| 91在线一区二区| 青娱乐精品在线视频| 久久久91精品国产一区二区精品| yourporn久久国产精品| 亚洲已满18点击进入久久| 91精品国产日韩91久久久久久| 久久精品二区亚洲w码| 中文字幕免费在线观看视频一区| 欧美亚洲动漫制服丝袜| 九色综合国产一区二区三区| 中文字幕一区二区三区四区不卡 | 欧美不卡一区二区三区| 丁香桃色午夜亚洲一区二区三区 | 欧美一区二区视频在线观看2020 | 欧美成人一区二区三区片免费| 国产成人福利片| 亚洲成人自拍网| 久久毛片高清国产| 在线观看精品一区| 丰满亚洲少妇av| 蜜桃av噜噜一区| 一区二区三区日韩欧美| 久久日韩精品一区二区五区| 欧美中文字幕一区| 成人黄色一级视频| 日韩国产精品大片| 亚洲日本乱码在线观看| 国产午夜精品在线观看| 日韩一区二区三区免费看| 91色婷婷久久久久合中文| 国内精品不卡在线| 亚洲国产你懂的| 亚洲区小说区图片区qvod| 久久色中文字幕| 日韩欧美中文字幕公布| 欧美日韩一级黄| 在线视频你懂得一区| 床上的激情91.| 国产成人精品影院| 国产原创一区二区三区| 美脚の诱脚舐め脚责91| 亚洲一区在线免费观看| 一区二区三区视频在线看| 亚洲人成亚洲人成在线观看图片| 久久精品亚洲一区二区三区浴池 | 五月综合激情婷婷六月色窝| 亚洲摸摸操操av| 亚洲四区在线观看| 综合av第一页| 中文字幕一区二区三区av| 国产精品狼人久久影院观看方式| 久久精品亚洲一区二区三区浴池 | 亚洲成人综合在线| 亚洲成av人片| 亚洲国产精品精华液网站| 亚洲欧美日韩小说| 亚洲综合另类小说| 午夜欧美在线一二页| 天天影视色香欲综合网老头| 性做久久久久久久久| 五月婷婷欧美视频| 蜜臀久久久久久久| 激情五月婷婷综合| 国模无码大尺度一区二区三区| 国产精品一区二区三区四区 | 成av人片一区二区| 91麻豆成人久久精品二区三区| 91丝袜美女网| 欧美日韩日日夜夜| 日韩欧美的一区二区| 国产亚洲成年网址在线观看| 国产精品美女一区二区| 亚洲精品ww久久久久久p站| 亚洲一区二区三区四区五区黄| 亚洲午夜久久久久久久久电影网 | 亚洲色欲色欲www| 亚洲中国最大av网站| 日韩激情视频在线观看| 激情另类小说区图片区视频区| 国产一区二区三区电影在线观看| 懂色av一区二区三区免费观看| 成人高清视频免费观看| 欧美天天综合网| 久久九九久久九九| 亚洲精品中文字幕在线观看| 日韩电影在线观看一区| 顶级嫩模精品视频在线看| 欧美丝袜自拍制服另类| 久久青草国产手机看片福利盒子 | 99麻豆久久久国产精品免费| 欧洲一区在线观看| 精品成人一区二区三区四区| 综合分类小说区另类春色亚洲小说欧美 | 最新国产成人在线观看| 香蕉加勒比综合久久| 国产成人精品三级| 欧美日韩综合不卡| 亚洲欧洲日韩一区二区三区| 青草av.久久免费一区| 色综合天天综合| 久久久不卡网国产精品二区| 偷窥少妇高潮呻吟av久久免费| 成人激情动漫在线观看|