?? mlpbkp.m
字號:
function g = mlpbkp(net, x, z, deltas)%MLPBKP Backpropagate gradient of error function for 2-layer network.%% Description% G = MLPBKP(NET, X, Z, DELTAS) takes a network data structure NET% together with a matrix X of input vectors, a matrix Z of hidden unit% activations, and a matrix DELTAS of the gradient of the error% function with respect to the values of the output units (i.e. the% summed inputs to the output units, before the activation function is% applied). The return value is the gradient G of the error function% with respect to the network weights. Each row of X corresponds to one% input vector.%% This function is provided so that the common backpropagation% algorithm can be used by multi-layer perceptron network models to% compute gradients for mixture density networks as well as standard% error functions.%% See also% MLP, MLPGRAD, MLPDERIV, MDNGRAD%% Copyright (c) Ian T Nabney (1996-2001)% Evaluate second-layer gradients.gw2 = z'*deltas;gb2 = sum(deltas, 1);% Now do the backpropagation.delhid = deltas*net.w2';delhid = delhid.*(1.0 - z.*z);% Finally, evaluate the first-layer gradients.gw1 = x'*delhid;gb1 = sum(delhid, 1);g = [gw1(:)', gb1, gw2(:)', gb2];
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -