?? graddesc.m
字號:
function [x, options, flog, pointlog] = graddesc(f, x, options, gradf, ... varargin)%GRADDESC Gradient descent optimization.%% Description% [X, OPTIONS, FLOG, POINTLOG] = GRADDESC(F, X, OPTIONS, GRADF) uses% batch gradient descent to find a local minimum of the function F(X)% whose gradient is given by GRADF(X). A log of the function values% after each cycle is (optionally) returned in ERRLOG, and a log of the% points visited is (optionally) returned in POINTLOG.%% Note that X is a row vector and F returns a scalar value. The point% at which F has a local minimum is returned as X. The function value% at that point is returned in OPTIONS(8).%% GRADDESC(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional% arguments to be passed to F() and GRADF().%% The optional parameters have the following interpretations.%% OPTIONS(1) is set to 1 to display error values; also logs error% values in the return argument ERRLOG, and the points visited in the% return argument POINTSLOG. If OPTIONS(1) is set to 0, then only% warning messages are displayed. If OPTIONS(1) is -1, then nothing is% displayed.%% OPTIONS(2) is the absolute precision required for the value of X at% the solution. If the absolute difference between the values of X% between two successive steps is less than OPTIONS(2), then this% condition is satisfied.%% OPTIONS(3) is a measure of the precision required of the objective% function at the solution. If the absolute difference between the% objective function values between two successive steps is less than% OPTIONS(3), then this condition is satisfied. Both this and the% previous condition must be satisfied for termination.%% OPTIONS(7) determines the line minimisation method used. If it is% set to 1 then a line minimiser is used (in the direction of the% negative gradient). If it is 0 (the default), then each parameter% update is a fixed multiple (the learning rate) of the negative% gradient added to a fixed multiple (the momentum) of the previous% parameter update.%% OPTIONS(9) should be set to 1 to check the user defined gradient% function GRADF with GRADCHEK. This is carried out at the initial% parameter vector X.%% OPTIONS(10) returns the total number of function evaluations% (including those in any line searches).%% OPTIONS(11) returns the total number of gradient evaluations.%% OPTIONS(14) is the maximum number of iterations; default 100.%% OPTIONS(15) is the precision in parameter space of the line search;% default FOPTIONS(2).%% OPTIONS(17) is the momentum; default 0.5. It should be scaled by the% inverse of the number of data points.%% OPTIONS(18) is the learning rate; default 0.01. It should be scaled% by the inverse of the number of data points.%% See also% CONJGRAD, LINEMIN, OLGD, MINBRACK, QUASINEW, SCG%% Copyright (c) Ian T Nabney (1996-2001)% Set up the options.if length(options) < 18 error('Options vector too short')endif (options(14)) niters = options(14);else niters = 100;endline_min_flag = 0; % Flag for line minimisation optionif (round(options(7)) == 1) % Use line minimisation line_min_flag = 1; % Set options for line minimiser line_options = foptions; if options(15) > 0 line_options(2) = options(15); endelse % Learning rate: must be positive if (options(18) > 0) eta = options(18); else eta = 0.01; end % Momentum term: allow zero momentum if (options(17) >= 0) mu = options(17); else mu = 0.5; endend% Check function stringf = fcnchk(f, length(varargin));gradf = fcnchk(gradf, length(varargin));% Display information if options(1) > 0display = options(1) > 0;% Work out if we need to compute f at each iteration.% Needed if using line search or if display results or if termination% criterion requires it.fcneval = (options(7) | display | options(3));% Check gradientsif (options(9) > 0) feval('gradchek', x, f, gradf, varargin{:});enddxold = zeros(1, size(x, 2));xold = x;fold = 0; % Must be initialised so that termination test can be performedif fcneval fnew = feval(f, x, varargin{:}); options(10) = options(10) + 1; fold = fnew;end% Main optimization loop.for j = 1:niters xold = x; grad = feval(gradf, x, varargin{:}); options(11) = options(11) + 1; % Increment gradient evaluation counter if (line_min_flag ~= 1) dx = mu*dxold - eta*grad; x = x + dx; dxold = dx; if fcneval fold = fnew; fnew = feval(f, x, varargin{:}); options(10) = options(10) + 1; end else sd = - grad./norm(grad); % New search direction. fold = fnew; % Do a line search: normalise search direction to have length 1 [lmin, line_options] = feval('linemin', f, x, sd, fold, ... line_options, varargin{:}); options(10) = options(10) + line_options(10); x = xold + lmin*sd; fnew = line_options(8); end if nargout >= 3 flog(j) = fnew; if nargout >= 4 pointlog(j, :) = x; end end if display fprintf(1, 'Cycle %5d Function %11.8f\n', j, fnew); end if (max(abs(x - xold)) < options(2) & abs(fnew - fold) < options(3)) % Termination criteria are met options(8) = fnew; return; endendif fcneval options(8) = fnew;else options(8) = feval(f, x, varargin{:}); options(10) = options(10) + 1;endif (options(1) >= 0) disp('Warning: Maximum number of iterations has been exceeded in graddesc');end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -