亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demmdn1.m

?? this is also good for learning SVM algorithm
?? M
字號:
%DEMMDN1 Demonstrate fitting a multi-valued function using a Mixture Density Network.%%	Description%	The problem consists of one input variable X and one target variable%	T with data generated by sampling T at equal intervals and then%	generating target data by computing T + 0.3*SIN(2*PI*T) and adding%	Gaussian noise. A Mixture Density Network with 3 centres in the%	mixture model is trained by minimizing a negative log likelihood%	error function using the scaled conjugate gradient optimizer.%%	The conditional means, mixing coefficients and variances are plotted%	as a function of X, and a contour plot of the full conditional%	density is also generated.%%	See also%	MDN, MDNERR, MDNGRAD, SCG%%	Copyright (c) Ian T Nabney (1996-2001)% Generate the matrix of inputs x and targets t.seedn = 42;seed = 42;randn('state', seedn);rand('state', seed);ndata = 300;			% Number of data points.noise = 0.2;			% Range of noise distribution.t = [0:1/(ndata - 1):1]';x = t + 0.3*sin(2*pi*t) + noise*rand(ndata, 1) - noise/2;axis_limits = [-0.2 1.2 -0.2 1.2];clcdisp('This demonstration illustrates the use of a Mixture Density Network')disp('to model multi-valued functions.  The data is generated from the')disp('mapping x = t + 0.3 sin(2 pi t) + e, where e is a noise term.')disp('We begin by plotting the data.')disp(' ')disp('Press any key to continue')pause% Plot the datafh1 = figure;p1 = plot(x, t, 'ob');axis(axis_limits);hold ondisp('Note that for x in the range 0.35 to 0.65, there are three possible')disp('branches of the function.')disp(' ')disp('Press any key to continue')pause% Set up network parameters.nin = 1;			% Number of inputs.nhidden = 5;			% Number of hidden units.ncentres = 3;			% Number of mixture components.dim_target = 1;			% Dimension of target spacemdntype = '0';			% Currently unused: reserved for future usealpha = 100;			% Inverse variance for weight initialisation				% Make variance small for good starting point% Create and initialize network weight vector.net = mdn(nin, nhidden, ncentres, dim_target, mdntype);init_options = zeros(1, 18);init_options(1) = -1;	% Suppress all messagesinit_options(14) = 10;  % 10 iterations of K means in gmminitnet = mdninit(net, alpha, t, init_options);% Set up vector of options for the optimiser.options = foptions;options(1) = 1;			% This provides display of error values.options(14) = 200;		% Number of training cycles. clcdisp('We initialise the neural network model, which is an MLP with a')disp('Gaussian mixture model with three components and spherical variance')disp('as the error function.  This enables us to model the complete')disp('conditional density function.')disp(' ')disp('Next we train the model for 200 epochs using a scaled conjugate gradient')disp('optimizer.  The error function is the negative log likelihood of the')disp('training data.')disp(' ')disp('Press any key to continue.')pause% Train using scaled conjugate gradients.[net, options] = netopt(net, options, x, t, 'scg');disp(' ')disp('Press any key to continue.')pauseclcdisp('We can also train a conventional MLP with sum of squares error function.')disp('This will approximate the conditional mean, which is not always a')disp('good representation of the data.  Note that the error function is the')disp('sum of squares error on the training data, which accounts for the')disp('different values from training the MDN.')disp(' ')disp('We train the network with the quasi-Newton optimizer for 80 epochs.')disp(' ')disp('Press any key to continue.')pausemlp_nhidden = 8;net2 = mlp(nin, mlp_nhidden, dim_target, 'linear');options(14) = 80; [net2, options] = netopt(net2, options, x, t, 'quasinew');disp(' ')disp('Press any key to continue.')pauseclcdisp('Now we plot the underlying function, the MDN prediction,')disp('represented by the mode of the conditional distribution, and the')disp('prediction of the conventional MLP.')disp(' ')disp('Press any key to continue.')pause% Plot the original function, and the trained network function.plotvals = [0:0.01:1]';mixes = mdn2gmm(mdnfwd(net, plotvals));axis(axis_limits);yplot = t+0.3*sin(2*pi*t);p2 = plot(yplot, t, '--y');% Use the mode to represent the functiony = zeros(1, length(plotvals));priors = zeros(length(plotvals), ncentres);c = zeros(length(plotvals), 3);widths = zeros(length(plotvals), ncentres);for i = 1:length(plotvals)  [m, j] = max(mixes(i).priors);  y(i) = mixes(i).centres(j,:);  c(i,:) = mixes(i).centres';endp3 = plot(plotvals, y, '*r');p4 = plot(plotvals, mlpfwd(net2, plotvals), 'g');set(p4, 'LineWidth', 2);legend([p1 p2 p3 p4], 'data', 'function', 'MDN mode', 'MLP mean', 4);hold offclcdisp('We can also plot how the mixture model parameters depend on x.')disp('First we plot the mixture centres, then the priors and finally')disp('the variances.')disp(' ')disp('Press any key to continue.')pausefh2 = figure;subplot(3, 1, 1)plot(plotvals, c)hold ontitle('Mixture centres')legend('centre 1', 'centre 2', 'centre 3')hold offpriors = reshape([mixes.priors], mixes(1).ncentres, size(mixes, 2))';%%fh3 = figure;subplot(3, 1, 2)plot(plotvals, priors)hold ontitle('Mixture priors')legend('centre 1', 'centre 2', 'centre 3')hold offvariances = reshape([mixes.covars], mixes(1).ncentres, size(mixes, 2))';%%fh4 = figure;subplot(3, 1, 3)plot(plotvals, variances)hold ontitle('Mixture variances')legend('centre 1', 'centre 2', 'centre 3')hold offdisp('The last figure is a contour plot of the conditional probability')disp('density generated by the Mixture Density Network.  Note how it')disp('is well matched to the regions of high data density.')disp(' ')disp('Press any key to continue.')pause% Contour plot for MDN.i = 0:0.01:1.0;j = 0:0.01:1.0;[I, J] = meshgrid(i,j);I = I(:);J = J(:);li = length(i);lj = length(j);Z = zeros(li, lj);for k = 1:li;  Z(:,k) = gmmprob(mixes(k), j');endfh5 = figure;% Set up levels by hand to make a good figurev = [2 2.5 3 3.5 5:3:18];contour(i, j, Z, v)hold ontitle('Contour plot of conditional density')hold offdisp(' ')disp('Press any key to exit.')pauseclose(fh1);close(fh2);%%close(fh3);%%close(fh4);close(fh5);%%clear all;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
在线视频观看一区| jlzzjlzz欧美大全| 欧美亚洲高清一区| 一区二区欧美视频| 在线一区二区视频| 日韩影院精彩在线| 日韩欧美第一区| 国产精选一区二区三区| 国产日韩av一区二区| 成人禁用看黄a在线| 日韩毛片一二三区| 欧美日本韩国一区二区三区视频| 亚洲444eee在线观看| 欧美一区二区精品在线| 国产一区二区视频在线| 国产精品国产自产拍高清av| 欧美自拍偷拍午夜视频| 日本女优在线视频一区二区| 久久久综合视频| 成人性生交大片免费看在线播放| 中文字幕永久在线不卡| 欧美日韩五月天| 精品一区中文字幕| 国产精品久久二区二区| 欧美日韩一区在线观看| 国产一区二区三区精品视频| 国产精品久久久久久亚洲伦| 欧美在线观看视频一区二区三区| 蜜臀av性久久久久蜜臀av麻豆 | 日本在线不卡视频| 久久久久久久久久久久电影 | 成人免费视频一区| 一区二区三区视频在线观看| 日韩欧美亚洲另类制服综合在线| 成人激情开心网| 亚洲bdsm女犯bdsm网站| 欧美激情一区二区三区蜜桃视频| 欧美日韩免费一区二区三区 | 日本精品视频一区二区三区| 极品销魂美女一区二区三区| 亚洲蜜臀av乱码久久精品| 日韩限制级电影在线观看| 色综合一区二区| 激情综合网最新| 亚洲五码中文字幕| 国产精品三级视频| 精品日本一线二线三线不卡| 欧美在线播放高清精品| 高清在线观看日韩| 裸体在线国模精品偷拍| 亚洲精品大片www| 国产偷国产偷精品高清尤物| 9191国产精品| 色噜噜偷拍精品综合在线| 黄色成人免费在线| 日本亚洲欧美天堂免费| 亚洲人亚洲人成电影网站色| 国产婷婷色一区二区三区在线| 欧美高清www午色夜在线视频| 97久久超碰国产精品| 国产99精品在线观看| 精彩视频一区二区三区| 日本人妖一区二区| 亚洲午夜国产一区99re久久| 男人的天堂亚洲一区| 亚洲精品欧美激情| 成人欧美一区二区三区视频网页| 亚洲精品在线一区二区| 制服丝袜激情欧洲亚洲| 欧美日韩一区三区四区| 在线看国产一区| 色综合色综合色综合色综合色综合| 国产69精品久久777的优势| 国产精品中文字幕日韩精品| 九九视频精品免费| 激情另类小说区图片区视频区| 免费观看一级欧美片| 五月天欧美精品| 亚洲福利电影网| 亚洲高清免费视频| 亚洲一区二区精品视频| 亚洲国产精品久久人人爱蜜臀| 亚洲另类在线一区| 一区二区免费看| 一区二区三区 在线观看视频| 一区二区三区四区在线免费观看 | 国产精品久久国产精麻豆99网站| 日本一区免费视频| 国产精品天美传媒沈樵| 亚洲欧美综合色| 日韩美女精品在线| 一区二区三区成人在线视频 | 亚洲一区二区欧美| 午夜国产不卡在线观看视频| 日本亚洲一区二区| 狠狠色丁香久久婷婷综合_中| 国产一区二区三区高清播放| 国产不卡在线播放| 色成年激情久久综合| 欧美亚洲图片小说| 日韩一级大片在线观看| 精品国产乱码久久久久久久久| 久久久国产午夜精品 | 免费在线观看一区| 欧美高清激情brazzers| 欧美另类一区二区三区| 另类成人小视频在线| 免费观看一级特黄欧美大片| 色综合av在线| 成人妖精视频yjsp地址| 国产精品一二三区| 精品亚洲国产成人av制服丝袜| 日韩成人午夜电影| 午夜精品久久久久影视| 亚洲6080在线| 亚洲1区2区3区视频| 夜夜揉揉日日人人青青一国产精品| 国产欧美日韩精品一区| 国产欧美综合色| 欧美高清在线一区| 国产精品日产欧美久久久久| 中文字幕精品一区二区三区精品 | 色女孩综合影院| 97成人超碰视| eeuss鲁一区二区三区| 99re这里都是精品| 色国产综合视频| 欧美日韩一区视频| 日韩一区二区不卡| 欧美精品一区二区三| 国产精品毛片久久久久久久| 欧美国产日韩精品免费观看| 国产女人18毛片水真多成人如厕| 国产精品电影一区二区| 亚洲精品中文字幕乱码三区| 亚洲一区二区av电影| 午夜一区二区三区在线观看| 免费观看在线综合色| 国产激情视频一区二区在线观看 | 一区二区免费在线播放| 亚洲va欧美va天堂v国产综合| 亚洲一区在线看| 免费xxxx性欧美18vr| 国产黄色成人av| 在线视频你懂得一区二区三区| 在线综合+亚洲+欧美中文字幕| 精品嫩草影院久久| 中文字幕亚洲一区二区va在线| 亚洲.国产.中文慕字在线| 狠狠网亚洲精品| 色综合天天综合网天天看片| 91麻豆精品国产自产在线| 精品久久久久香蕉网| 亚洲女女做受ⅹxx高潮| 久久精品国产免费| 91在线看国产| 精品国产伦一区二区三区观看体验 | 一级中文字幕一区二区| 欧美a级一区二区| 99久久综合国产精品| 在线观看91av| 国产精品视频观看| 奇米色一区二区| 99国产麻豆精品| 精品日韩在线观看| 亚洲在线一区二区三区| 国产99精品在线观看| 欧美一区二区三区免费在线看 | 91久久一区二区| 亚洲精品一区二区三区蜜桃下载 | 欧美色视频在线| 国产亚洲欧美激情| 日本中文字幕一区二区视频| 99久久精品国产麻豆演员表| 欧美成人激情免费网| 一区二区三区**美女毛片| 国产福利91精品一区| 欧美一区二区久久| 性欧美疯狂xxxxbbbb| 99精品1区2区| 国产精品久久久久9999吃药| 麻豆久久久久久久| 欧美久久久久中文字幕| 亚洲欧美激情在线| heyzo一本久久综合| 26uuu国产一区二区三区| 首页国产欧美久久| 欧美午夜精品一区二区三区| 国产精品成人免费精品自在线观看| 青青草国产精品亚洲专区无| 欧美群妇大交群中文字幕| 亚洲自拍都市欧美小说| 99精品国产热久久91蜜凸| 中文字幕成人av| 国产99久久久国产精品潘金网站| 精品播放一区二区| 国产精品自拍毛片| 久久久精品蜜桃| 国产精品自在在线| 久久久久久**毛片大全|