亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? rbf.m

?? this is also good for learning SVM algorithm
?? M
字號:
function net = rbf(nin, nhidden, nout, rbfunc, outfunc, prior, beta)%RBF	Creates an RBF network with specified architecture%%	Description%	NET = RBF(NIN, NHIDDEN, NOUT, RBFUNC) constructs and initialises a%	radial basis function network returning a data structure NET. The%	weights are all initialised with a zero mean, unit variance normal%	distribution, with the exception of the variances, which are set to%	one. This makes use of the Matlab function RANDN and so the seed for%	the random weight initialization can be  set using RANDN('STATE', S)%	where S is the seed value. The activation functions are defined in%	terms of the distance between the data point and the corresponding%	centre.  Note that the functions are computed to a convenient%	constant multiple: for example, the Gaussian is not normalised.%	(Normalisation is not needed as the function outputs are linearly%	combined in the next layer.)%%	The fields in NET are%	  type = 'rbf'%	  nin = number of inputs%	  nhidden = number of hidden units%	  nout = number of outputs%	  nwts = total number of weights and biases%	  actfn = string defining hidden unit activation function:%	    'gaussian' for a radially symmetric Gaussian function.%	    'tps' for r^2 log r, the thin plate spline function.%	    'r4logr' for r^4 log r.%	  outfn = string defining output error function:%	    'linear' for linear outputs (default) and SoS error.%	    'neuroscale' for Sammon stress measure.%	  c = centres%	  wi = squared widths (null for rlogr and tps)%	  w2 = second layer weight matrix%	  b2 = second layer bias vector%%	NET = RBF(NIN, NHIDDEN, NOUT, RBFUND, OUTFUNC) allows the user to%	specify the type of error function to be used.  The field OUTFN is%	set to the value of this string.  Linear outputs (for regression%	problems) and Neuroscale outputs (for topographic mappings) are%	supported.%%	NET = RBF(NIN, NHIDDEN, NOUT, RBFUNC, OUTFUNC, PRIOR, BETA), in which%	PRIOR is a scalar, allows the field NET.ALPHA in the data structure%	NET to be set, corresponding to a zero-mean isotropic Gaussian prior%	with inverse variance with value PRIOR. Alternatively, PRIOR can%	consist of a data structure with fields ALPHA and INDEX, allowing%	individual Gaussian priors to be set over groups of weights in the%	network. Here ALPHA is a column vector in which each element%	corresponds to a separate group of weights, which need not be%	mutually exclusive.  The membership of the groups is defined by the%	matrix INDX in which the columns correspond to the elements of ALPHA.%	Each column has one element for each weight in the matrix, in the%	order defined by the function RBFPAK, and each element is 1 or 0%	according to whether the weight is a member of the corresponding%	group or not. A utility function RBFPRIOR is provided to help in%	setting up the PRIOR data structure.%%	NET = RBF(NIN, NHIDDEN, NOUT, FUNC, PRIOR, BETA) also sets the%	additional field NET.BETA in the data structure NET, where beta%	corresponds to the inverse noise variance.%%	See also%	RBFERR, RBFFWD, RBFGRAD, RBFPAK, RBFTRAIN, RBFUNPAK%%	Copyright (c) Ian T Nabney (1996-2001)net.type = 'rbf';net.nin = nin;net.nhidden = nhidden;net.nout = nout;% Check that function is an allowed typeactfns = {'gaussian', 'tps', 'r4logr'};outfns = {'linear', 'neuroscale'};if (strcmp(rbfunc, actfns)) == 0  error('Undefined activation function.')else  net.actfn = rbfunc;endif nargin <= 4   net.outfn = outfns{1};elseif (strcmp(outfunc, outfns) == 0)   error('Undefined output function.')else   net.outfn = outfunc; end% Assume each function has a centre and a single width parameter, and that% hidden layer to output weights include a bias.  Only the Gaussian function% requires a widthnet.nwts = nin*nhidden + (nhidden + 1)*nout;if strcmp(rbfunc, 'gaussian')  % Extra weights for width parameters  net.nwts = net.nwts + nhidden;endif nargin > 5  if isstruct(prior)    net.alpha = prior.alpha;    net.index = prior.index;  elseif size(prior) == [1 1]    net.alpha = prior;  else    error('prior must be a scalar or a structure');  end    if nargin > 6    net.beta = beta;  endendw = randn(1, net.nwts);net = rbfunpak(net, w);% Make widths equal to oneif strcmp(rbfunc, 'gaussian')  net.wi = ones(1, nhidden);endif strcmp(net.outfn, 'neuroscale')  net.mask = rbfprior(rbfunc, nin, nhidden, nout);end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久久亚洲精品石原莉奈| 26uuu欧美| 欧美主播一区二区三区美女| caoporm超碰国产精品| 成人深夜在线观看| av一二三不卡影片| 91丨九色丨尤物| 欧美亚洲尤物久久| 日韩一区二区三区在线观看| 精品欧美一区二区在线观看| 精品久久久久一区| 中文字幕欧美日本乱码一线二线| 久久久精品免费观看| 中文字幕在线一区二区三区| 亚洲欧美激情视频在线观看一区二区三区| 亚洲婷婷在线视频| 亚洲午夜一区二区| 久久成人精品无人区| 国产精品中文字幕欧美| 色综合一个色综合亚洲| 欧美日韩视频专区在线播放| 日韩欧美国产综合| 国产精品无人区| 亚洲成人自拍网| 九九在线精品视频| 91年精品国产| 日韩三级视频中文字幕| 亚洲欧美中日韩| 日本不卡一区二区三区高清视频| 国产专区综合网| 一本久道中文字幕精品亚洲嫩| 精品视频一区 二区 三区| 欧美电影免费提供在线观看| 中文字幕制服丝袜一区二区三区 | 成人免费毛片嘿嘿连载视频| 91美女精品福利| 精品少妇一区二区三区在线视频| 亚洲日本乱码在线观看| 免费三级欧美电影| 日本高清不卡视频| 久久综合久久综合久久| 天堂在线亚洲视频| 色综合天天综合网天天狠天天| 日韩欧美国产高清| 一区二区三区自拍| 成人v精品蜜桃久久一区| 在线观看91av| 一区二区成人在线观看| 国产超碰在线一区| 日韩欧美久久久| 亚洲aⅴ怡春院| 在线亚洲+欧美+日本专区| 国产精品视频一二三区| 久久aⅴ国产欧美74aaa| 欧美男男青年gay1069videost| 亚洲日本一区二区| 成人激情开心网| 久久精品人人做人人爽人人| 精品一区二区在线播放| 欧美一区二区三区爱爱| 亚洲午夜精品17c| 色综合视频在线观看| 国产精品久久久久影视| 国产乱码精品一区二区三 | 中文字幕av在线一区二区三区| 日韩专区在线视频| 在线不卡欧美精品一区二区三区| 亚洲欧洲日韩在线| voyeur盗摄精品| 综合激情成人伊人| 91免费观看国产| 中文字幕一区二区5566日韩| eeuss鲁片一区二区三区在线观看| 久久久久国产精品麻豆| 国产在线国偷精品产拍免费yy| 欧美大肚乱孕交hd孕妇| 久久精品国产999大香线蕉| 91精品国产麻豆| 久久精品国产一区二区三 | aaa欧美色吧激情视频| 日本一区二区三区免费乱视频 | 在线中文字幕一区二区| 亚洲柠檬福利资源导航| 欧美性色aⅴ视频一区日韩精品| 亚洲乱码国产乱码精品精小说| 色94色欧美sute亚洲线路一ni| 一区二区国产盗摄色噜噜| 欧美亚男人的天堂| 免费视频一区二区| 国产欧美日产一区| 91丨九色丨国产丨porny| 亚洲主播在线播放| 日韩色在线观看| 成人激情午夜影院| 亚洲伊人色欲综合网| 欧美一区二区免费视频| 激情久久久久久久久久久久久久久久| 久久精品夜色噜噜亚洲aⅴ| 成人听书哪个软件好| 亚洲在线观看免费视频| a级高清视频欧美日韩| 一区二区日韩av| 亚洲手机成人高清视频| 韩国av一区二区三区在线观看| 国产欧美日韩视频一区二区| 色综合天天综合给合国产| 日日摸夜夜添夜夜添国产精品| 亚洲精品一区二区三区四区高清| 国产成人av在线影院| 午夜精品免费在线观看| 久久精品一区二区三区不卡牛牛| 一本色道久久综合亚洲精品按摩| 日韩av成人高清| 自拍偷拍国产精品| 精品三级在线看| 欧美日韩亚洲综合在线 | 欧美sm极限捆绑bd| 91在线你懂得| 国产综合色视频| 亚洲国产一区二区三区| 欧美激情一区在线观看| 91精品国产91久久综合桃花| 91在线视频观看| 国产精品亚洲第一区在线暖暖韩国| 亚洲福利国产精品| 久久精品国产久精国产| 日韩欧美亚洲国产另类| 97se亚洲国产综合自在线观| 久久国产精品一区二区| 亚洲韩国精品一区| 亚洲欧洲一区二区三区| 久久中文字幕电影| 91精品国产色综合久久不卡蜜臀| 99久久伊人精品| 国产成人免费在线观看| 麻豆精品视频在线观看视频| 一区二区三区日韩精品| 国产精品成人在线观看| 欧美激情一区二区三区不卡| 亚洲精品一线二线三线| 91精品一区二区三区久久久久久| 在线视频你懂得一区| youjizz国产精品| 成年人午夜久久久| 国产成都精品91一区二区三| 国产精品99久久久久久久女警| 蜜臂av日日欢夜夜爽一区| 日韩黄色片在线观看| 午夜亚洲福利老司机| 污片在线观看一区二区| 一本久久综合亚洲鲁鲁五月天| 青青青伊人色综合久久| 日韩av在线发布| 日韩**一区毛片| 奇米一区二区三区av| 日本中文字幕一区| 久久99热这里只有精品| 极品销魂美女一区二区三区| 国产一区二区中文字幕| 丰满少妇在线播放bd日韩电影| 国产精品1024| av资源站一区| 欧美日韩黄视频| 日韩欧美综合在线| 久久久久久综合| 国产精品不卡视频| 一区二区三区免费| 免费av网站大全久久| 高清不卡一区二区在线| 一道本成人在线| 3d成人h动漫网站入口| 精品粉嫩超白一线天av| 日本一区二区综合亚洲| 亚洲自拍偷拍图区| 六月婷婷色综合| aaa国产一区| 欧美一区二区三区在| 国产欧美日韩视频在线观看| 国产麻豆一精品一av一免费| 国产高清亚洲一区| 日本精品免费观看高清观看| 6080午夜不卡| 中文字幕不卡在线播放| 一级做a爱片久久| 狠狠网亚洲精品| 91精品福利视频| 欧美成人性战久久| 日韩毛片精品高清免费| 美女网站色91| 色先锋aa成人| 久久午夜老司机| 日韩精品亚洲专区| 波多野结衣在线aⅴ中文字幕不卡| 欧美性大战久久久久久久| 久久美女艺术照精彩视频福利播放| 亚洲色图另类专区| 国产在线精品免费av| 精品视频在线免费观看| 欧美国产精品一区| 老鸭窝一区二区久久精品|