?? rbfgrad.m
字號:
function [g, gdata, gprior] = rbfgrad(net, x, t)%RBFGRAD Evaluate gradient of error function for RBF network.%% Description% G = RBFGRAD(NET, X, T) takes a network data structure NET together% with a matrix X of input vectors and a matrix T of target vectors,% and evaluates the gradient G of the error function with respect to% the network weights (i.e. including the hidden unit parameters). The% error function is sum of squares. Each row of X corresponds to one% input vector and each row of T contains the corresponding target% vector. If the output function is 'NEUROSCALE' then the gradient is% only computed for the output layer weights and biases.%% [G, GDATA, GPRIOR] = RBFGRAD(NET, X, T) also returns separately the% data and prior contributions to the gradient. In the case of multiple% groups in the prior, GPRIOR is a matrix with a row for each group and% a column for each weight parameter.%% See also% RBF, RBFFWD, RBFERR, RBFPAK, RBFUNPAK, RBFBKP%% Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyswitch net.outfncase 'linear' errstring = consist(net, 'rbf', x, t);case 'neuroscale' errstring = consist(net, 'rbf', x);otherwise error(['Unknown output function ', net.outfn]);endif ~isempty(errstring); error(errstring);endndata = size(x, 1);[y, z, n2] = rbffwd(net, x);switch net.outfncase 'linear' % Sum squared error at output units delout = y - t; gdata = rbfbkp(net, x, z, n2, delout); [g, gdata, gprior] = gbayes(net, gdata);case 'neuroscale' % Compute the error gradient with respect to outputs y_dist = sqrt(dist2(y, y)); D = (t - y_dist)./(y_dist+diag(ones(ndata, 1))); temp = y'; gradient = 2.*sum(kron(D, ones(1, net.nout)) .* ... (repmat(y, 1, ndata) - repmat((temp(:))', ndata, 1)), 1); gradient = (reshape(gradient, net.nout, ndata))'; % Compute the error gradient gdata = rbfbkp(net, x, z, n2, gradient); [g, gdata, gprior] = gbayes(net, gdata);otherwise error(['Unknown output function ', net.outfn]);end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -