?? mlpgrad.m
字號:
function [g, gdata, gprior] = mlpgrad(net, x, t)%MLPGRAD Evaluate gradient of error function for 2-layer network.%% Description% G = MLPGRAD(NET, X, T) takes a network data structure NET together% with a matrix X of input vectors and a matrix T of target vectors,% and evaluates the gradient G of the error function with respect to% the network weights. The error funcion corresponds to the choice of% output unit activation function. Each row of X corresponds to one% input vector and each row of T corresponds to one target vector.%% [G, GDATA, GPRIOR] = MLPGRAD(NET, X, T) also returns separately the% data and prior contributions to the gradient. In the case of multiple% groups in the prior, GPRIOR is a matrix with a row for each group and% a column for each weight parameter.%% See also% MLP, MLPPAK, MLPUNPAK, MLPFWD, MLPERR, MLPBKP%% Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyerrstring = consist(net, 'mlp', x, t);if ~isempty(errstring); error(errstring);end[y, z] = mlpfwd(net, x);delout = y - t;gdata = mlpbkp(net, x, z, delout);[g, gdata, gprior] = gbayes(net, gdata);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -