?? ballsensitive.m
字號:
%datai=[0.07865 0.08467 0.31751 -0.30140 1.24090 0.01417 0.00210 3442.15687 4167.07178 1]
%datai=[0.07269 0.07376 0.31125 -0.28664 1.23986 0.02837 0.00097 3028.50500 4167.07178 1]
load allclass4.txt;
load fnet;
datai=allclass4*1.064;
datai1=allclass4*0.95;
[N M]=size(datai);
nmax=[0.66911 0.66951 6.6529 -0.21819 2.0535 0.12064 0.01222 8260 8604;0.66911 0.66951 6.6529 -0.21819 2.0535 0.12064 0.01222 8260 8604;0.66911 0.66951 6.6529 -0.21819 2.0535 0.12064 0.01222 8260 8604;0.66911 0.66951 6.6529 -0.21819 2.0535 0.12064 0.01222 8260 8604;0.66911 0.66951 6.6529 -0.21819 2.0535 0.12064 0.01222 8260 8604;0.66911 0.66951 6.6529 -0.21819 2.0535 0.12064 0.01222 8260 8604; 0.66911 0.66951 6.6529 -0.21819 2.0535 0.12064 0.01222 8260 8604; 0.66911 0.66951 6.6529 -0.21819 2.0535 0.12064 0.01222 8260 8604;0.66911 0.66951 6.6529 -0.21819 2.0535 0.12064 0.01222 8260 8604;0.66911 0.66951 6.6529 -0.21819 2.0535 0.12064 0.01222 8260 8604; 0.66911 0.66951 6.6529 -0.21819 2.0535 0.12064 0.01222 8260 8604; 0.66911 0.66951 6.6529 -0.21819 2.0535 0.12064 0.01222 8260 8604];
nmin=[0.06315 0.06433 0.28372 -6.6533 1.2399 0.00999 0.00013 3028.5 4166.2; 0.06315 0.06433 0.28372 -6.6533 1.2399 0.00999 0.00013 3028.5 4166.2; 0.06315 0.06433 0.28372 -6.6533 1.2399 0.00999 0.00013 3028.5 4166.2; 0.06315 0.06433 0.28372 -6.6533 1.2399 0.00999 0.00013 3028.5 4166.2; 0.06315 0.06433 0.28372 -6.6533 1.2399 0.00999 0.00013 3028.5 4166.2; 0.06315 0.06433 0.28372 -6.6533 1.2399 0.00999 0.00013 3028.5 4166.2; 0.06315 0.06433 0.28372 -6.6533 1.2399 0.00999 0.00013 3028.5 4166.2; 0.06315 0.06433 0.28372 -6.6533 1.2399 0.00999 0.00013 3028.5 4166.2; 0.06315 0.06433 0.28372 -6.6533 1.2399 0.00999 0.00013 3028.5 4166.2; 0.06315 0.06433 0.28372 -6.6533 1.2399 0.00999 0.00013 3028.5 4166.2;0.06315 0.06433 0.28372 -6.6533 1.2399 0.00999 0.00013 3028.5 4166.2;0.06315 0.06433 0.28372 -6.6533 1.2399 0.00999 0.00013 3028.5 4166.2];
% % actual_data = normalise(datai,nmax,nmin);
% % for i=1:N
% % nmax(i)=datai(i,N-1);
% % nmin(i)=datai(i,N-1);
% for j=1:M
% if datai(j)>nmax
% nmax=datai(j)
% end
% if datai(j)<nmin
% nmin=datai(j)
% end
% end
% % end
% num = data - nmin';
%dem=nmax - nmin';
% datae = num/dem; % no delay
% for i=1:N
anu=(datai-nmin);
anu1=(datai1-nmin);
ana=(nmax-nmin);
datas =anu./ana
datas1 =anu1./ana
%datad(i,1:M-1)=datai(i,2:M); % 1 delayed term
%end %datad1(i,1:M-2)=datai(i,3:M); % 2 delayed term
an=sim(fnet,datas') %simulation the network
an1=sim(fnet,datas1')
UL =5;
LL= 3;
figure(i);
output=output*3+1;
an=an*3+1;
an1=an1*3+1;
s=(1:12); %plot the graf data vs month(1986-2001)
plot(s,UL,'r+',s,LL,'r+-',s,an,'b.-',s,an1,'g*-')
xlabel('Observation Data')
ylabel('Classification Output ')
title('Violation output at ball fault condition ')
%legend(' = actual',' = prediction')
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -