?? bcs_fast_rvm.m
字號:
function [weights,used,sigma2,errbars,basis] = BCS_fast_rvm(PHI,t,sigma2,eta,adaptive,optimal,scale)
%------------------------------------------------------------------
% The BCS algorithm for the following paper:
% "Bayesian Compressive Sesning" (Preprint, 2007). The algorithm
% adopts from the fast RVM algorithm [Tipping & Faul, 2003].
% Coded by: Shihao Ji, ECE, Duke University
% last change: Jan. 2, 2007
% You are suggested to use mt_CS.m for improved robustness
%------------------------------------------------------------------
% Input for BCS:
% PHI: projection matrix
% t: CS measurements
% sigma2: initial noise variance
% If measurement noise exists and/or w is not truely sparse,
% then sigma2 = std(t)^2/1e2 (suggested)
% If no measurement noise and w is truely sparse,
% then sigma2 = std(t)^2/1e6 (suggested)
% This term is in fact not updated in the implementation to allow
% the fast algorithm. For this reason, you are recommended to use
% mt_CS.m, in which the noise variance is marginalized.
% eta: threshold for stopping the algorithm (suggested value: 1e-8)
% Input for Adaptive CS:
% adaptive: generate basis for adpative CS? (default: 0)
% optimal: use the rigorous implementation of adaptive CS? (default: 1)
% scale: diagonal loading parameter (default: 0.1)
% Output:
% weights: sparse weights
% used: the positions of sparse weights
% sigma2: re-estimated noise variance
% errbars: one standard deviation around the sparse weights
% basis: if adaptive==1, then basis = the next projection vector
%
if nargin < 5
adaptive = 0;
end
if nargin < 6
optimal = 1;
end
if nargin < 7
scale = 0.1;
end
% find initial alpha
[N,M] = size(PHI);
PHIt = PHI'*t;
PHI2 = sum(PHI.^2)';
ratio = (PHIt.^2)./PHI2;
[maxr,index] = max(ratio);
alpha = PHI2(index)/(maxr-sigma2);
% compute initial mu, Sig, S, Q
phi = PHI(:,index);
Hessian = alpha + phi'*phi/sigma2;
Sig = 1/Hessian;
mu = Sig*PHIt(index)/sigma2;
left = PHI'*phi/sigma2;
S = PHI2/sigma2-Sig*left.^2;
Q = PHIt/sigma2-Sig*PHIt(index)/sigma2*left;
%
for count = 1:10000
s = S; q = Q;
s(index) = alpha.*S(index)./(alpha-S(index));
q(index) = alpha.*Q(index)./(alpha-S(index));
theta = q.^2-s;
% choice the next alpha that maximizes marginal likelihood
ml = -inf*ones(1,M);
ig0 = find(theta>0);
% index for re-estimate
[ire,foo,which] = intersect(ig0,index);
if ~isempty(ire)
Alpha = s(ire).^2./theta(ire);
delta = (alpha(which)-Alpha)./(Alpha.*alpha(which));
ml(ire) = Q(ire).^2.*delta./(S(ire).*delta+1)-log(1+S(ire).*delta);
end
% index for adding
iad = setdiff(ig0,ire);
if ~isempty(iad)
ml(iad) = (Q(iad).^2-S(iad))./S(iad)+log(S(iad)./(Q(iad).^2));
end
is0 = setdiff([1:M],ig0);
% index for deleting
[ide,foo,which] = intersect(is0,index);
if ~isempty(ide)
ml(ide) = Q(ide).^2./(S(ide)-alpha(which))-log(1-S(ide)./alpha(which));
end
[ML(count),idx] = max(ml);
% check if terminates?
if count > 2 & abs(ML(count)-ML(count-1)) < abs(ML(count)-ML(1))*eta
break;
end
% update alphas
which = find(index==idx);
if theta(idx) > 0
if ~isempty(which) % re-estimate
Alpha = s(idx)^2/theta(idx);
Sigii = Sig(which,which); mui = mu(which); Sigi = Sig(:,which);
delta = Alpha-alpha(which);
ki = delta/(1+Sigii*delta);
mu = mu-ki*mui*Sigi;
Sig = Sig-ki*Sigi*Sigi';
comm = PHI'*(phi*Sigi)/sigma2;
S = S + ki*comm.^2;
Q = Q + ki*mui*comm;
%
alpha(which) = Alpha;
else % adding
Alpha = s(idx)^2/theta(idx);
phii = PHI(:,idx); Sigii = 1/(Alpha+S(idx)); mui = Sigii*Q(idx);
comm1 = Sig*(phi'*phii)/sigma2;
ei = phii-phi*comm1;
off = -Sigii*comm1;
Sig = [Sig+Sigii*comm1*comm1', off; off', Sigii];
mu = [mu-mui*comm1; mui];
comm2 = PHI'*ei/sigma2;
S = S - Sigii*comm2.^2;
Q = Q - mui*comm2;
%
index = [index;idx];
alpha = [alpha;Alpha];
phi = [phi,phii];
end
else
if ~isempty(which) % deleting
Sigii = Sig(which,which); mui = mu(which); Sigi = Sig(:,which);
Sig = Sig-Sigi*Sigi'/Sigii; Sig(:,which) = []; Sig(which,:) = [];
mu = mu-mui/Sigii*Sigi; mu(which) = [];
comm = PHI'*(phi*Sigi)/sigma2;
S = S + comm.^2/Sigii;
Q = Q + mui/Sigii*comm;
%
index(which) = [];
alpha(which) = [];
phi(:,which) = [];
end
end
end
weights = mu;
used = index;
% re-estimated sigma2
sigma2 = sum((t-phi*mu).^2)/(N-length(index)+alpha'*diag(Sig));
errbars = sqrt(diag(Sig));
% generate a basis for adaptive CS?
if adaptive
if optimal
[V,D] = eig(Sig);
[foo,idx] = max(diag(D));
basis = V(:,idx)';
else
temp = phi'*phi/sigma2;
Sig_inv = temp + scale*mean(diag(temp))*eye(length(used));
[V,D] = eig(Sig_inv);
[foo,idx] = min(diag(D));
basis = V(:,idx)';
end
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -