?? the art of error correcting coding cyclic codes and bch codes.htm
字號(hào):
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0049)http://the-art-of-ecc.com/3_Cyclic_BCH/index.html -->
<HTML><HEAD><TITLE>The Art of Error Correcting Coding: Cyclic codes and BCH codes</TITLE>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<META content="Robert Morelos-Zaragoza" name=Author>
<META
content="Error Control Coding,Error CorrectingCoding,Error Correcting Codes,FEC,Turbo Codes,Iterative Decoding,DigitalCommunications,Wireless,Satellite,Data,Coded Modulation,Golay,Hamming,BCH,Reed Solomon,Viterbi Decoder,Soft Decision Decoding,Sudan Algorithm,Unequal Error Protection,Variable Rate Coding,Adaptive Coding,Convolutional Codes,LDPC,Low-Density Parity-Check Codes,The Art of Error-Correcting Coding,Capacity-achieving codes,Coding is not dead, is more alive than ever"
name=description>
<META content="MSHTML 6.00.2900.3395" name=GENERATOR></HEAD>
<BODY bgColor=#ffffff>
<CENTER><B><FONT size=+1>Binary Cyclic Codes and BCH codes</FONT></B></CENTER>
<P>Below are links to several programs written in C, and Matlab scripts, for
simulating encoding/decoding procedures and analyzing binary cyclic codes
and binary BCH codes, the topic of Chapter 3 of the <A
href="http://www.amazon.com/gp/product/0470015586/ref=sr_11_1/102-3025380-7157754?ie=UTF8">book!</A>
<BR> </P>
<P><B>Encoding and decoding of a shortened cyclic code:</B> <BR><A
href="http://the-art-of-ecc.com/3_Cyclic_BCH/RBDS.c">RBDS.c</A> </P>The decoding
algorithm used in RBDS.c is based on error trapping. The program emulates the
operation of the encoder and decoder of a binary cyclic codes, using bitwise
shifts and xor for modulo g(x) operations.<BR><BR><BR><SPAN
style="FONT-WEIGHT: bold">Illustration of a PGZ errors-only decoder of a binary
primitive BCH code:</SPAN><BR><A
href="http://the-art-of-ecc.com/3_Cyclic_BCH/bch_example.m">bch_example.m</A><BR><BR
style="FONT-WEIGHT: bold"><SPAN style="FONT-WEIGHT: bold">Compute the generator
polynomial of a binary Euclidean geometry (EG) code:</SPAN><BR><A
href="http://the-art-of-ecc.com/3_Cyclic_BCH/egcodepol.m">egcodepol.m</A><BR><BR><SPAN
style="FONT-WEIGHT: bold">Compute the generator polynomial of a binary
projective geometry (PG) code:</SPAN><BR><A
href="http://the-art-of-ecc.com/3_Cyclic_BCH/pgcodepol.m">pgcodepol.m</A><BR><BR><SPAN
style="FONT-WEIGHT: bold">Compute the generator polynomial of a binary BCH
(15,5,7) code:</SPAN><BR><A
href="http://the-art-of-ecc.com/3_Cyclic_BCH/genpol_bch_150507.m">genpol_bch_150507.m</A>
<BR><BR>
<HR style="WIDTH: 100%; HEIGHT: 2px">
<P><SMALL><I>NOTE: For the BCH decoders in C language below and the RS decoders
in another section, log and antilog tables are used to solve equations for the
unkown error positions (and values for RS codes). The value "-1" in the log
table indicates log(0) or "-infinity". Therefore, the programs have a number of
testing conditions for this value, when multiplying two elements in the Galois
field.</I> </SMALL><BR> </P>
<P><B>Encoding and decoding of a shortened binary (48,36,5) BCH code:</B> <BR><A
href="http://the-art-of-ecc.com/3_Cyclic_BCH/bch4836.c">bch4836.c</A> </P>
<P>Application of the PGZ decoding algorithm for t=2. <BR> </P>
<P><B>Encoding and decoding of binary BCH codes with the Berlekamp-Massey
decoding algorithm:</B> <BR><A
href="http://the-art-of-ecc.com/3_Cyclic_BCH/bch_bm.c">bch_bm.c</A> </P>
<P>Uses the Berlekamp-Massey decoding algorithm. Any (valid) code length can be
input. <BR> </P>
<P><B>Encoding and decoding of binary BCH codes with the Euclidean
algorithm:</B> <BR><A
href="http://the-art-of-ecc.com/3_Cyclic_BCH/bch_euc.c">bch_euc.c</A> </P>
<P>Decoding with the Euclidean algorithm. Any (valid) code length can be input.
<BR> </P>
<P><B>Simulation of a BCH code with binary transmission over an AWGN channel.
Berlekamp-Massey algorithm:</B> <BR><A
href="http://the-art-of-ecc.com/3_Cyclic_BCH/bch_awgn.c">bch_awgn.c</A> </P>
<P>Shows how to incorporate the AWGN/Rayleigh fading models in a basic decoding
program. <BR> </P>
<P><B>Encoding and errors-and-erasures decoding of binary BCH codes with the
Euclidean algorithm:</B> <BR><A
href="http://the-art-of-ecc.com/3_Cyclic_BCH/bch_erasures.c">bch_erasures.c</A>
</P>
<P>Erasure correction achieved by two errors-only decoding passes using the
Euclidean algorithm. Any (valid) code length can be input. <BR> </P>
<P><B><A href="http://the-art-of-ecc.com/topics.html">BACK TO CONTENTS</A></B>
<BR></P>
<HR>
<H6 style="FONT-WEIGHT: normal"><SMALL><FONT color=#000000>This page was last
updated August 6, 2008, by Robert H. Morelos-Zaragoza.</FONT></SMALL></H6><!-- text below generated by server. PLEASE REMOVE --><!-- Counter/Statistics data collection code -->
<SCRIPT language=JavaScript
src="The Art of Error Correcting Coding Cyclic codes and BCH codes.files/whv2_001.js"></SCRIPT>
<SCRIPT language=javascript>geovisit();</SCRIPT>
<NOSCRIPT><IMG height=1 alt=setstats
src="The Art of Error Correcting Coding Cyclic codes and BCH codes.files/visit.gif"
width=1 border=0></NOSCRIPT></BODY></HTML>
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -