亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.html

?? 支撐向量機SVM的工具LIBSVM
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Wed, 29 Oct 2008 23:37:19 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(70)</li>
<ul><b>
<li><a
href="#/Q1:_Some_sample_uses_of_libsvm">Q1:_Some_sample_uses_of_libsvm</a>(2)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(9)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(6)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(33)</li>
<li><a
href="#/Q5:_Probability_outputs">Q5:_Probability_outputs</a>(3)</li>
<li><a
href="#/Q6:_Graphic_interface">Q6:_Graphic_interface</a>(3)</li>
<li><a
href="#/Q7:_Java_version_of_libsvm">Q7:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q8:_Python_interface">Q8:_Python_interface</a>(5)</li>
<li><a
href="#/Q9:_MATLAB_interface">Q9:_MATLAB_interface</a>(5)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq101">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#faq102">Some applications which have used libsvm </a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">Where are change log and earlier versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f209">What is the difference between "." and "*" outputed during training? </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f304">Why sometimes the last line of my data is not read by svm-train?</a></li>
<li class="headlines_item"><a href="#f305">Is there a program to check if my data are in the correct format?</a></li>
<li class="headlines_item"><a href="#f306">May I put comments in data files?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running (without showing any output). What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f4141">Does shrinking always help?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
<li class="headlines_item"><a href="#f416">On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f4201">Why my cross-validation results are different from those in the Practical Guide?</a></li>
<li class="headlines_item"><a href="#f421">But on some systems CV accuracy is the same in several runs. How could I use different data partitions?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
<li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
<li class="headlines_item"><a href="#f429">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
<li class="headlines_item"><a href="#f430">Why the sign of predicted labels and decision values are sometimes reversed?</a></li>
<li class="headlines_item"><a href="#f431">I don't know class labels of test data. What should I put in the first column of the test file?</a></li>
<li class="headlines_item"><a href="#f432">How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</a></li>
<li class="headlines_item"><a href="#f433">How could I know which training instances are support vectors?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes a longer time?</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f427">Why using svm-predict -b 0 and -b 1 gives different accuracy values?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">On MS windows, why does python fail to load the pyd file?</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the .pyd file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
<li class="headlines_item"><a href="#f706">I typed "make" on a unix system, but it says "Python.h: No such file or directory?"</a></li>
<li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
<li class="headlines_item"><a href="#f802">Does the MATLAB interface provide a function to do scaling?</a></li>
<li class="headlines_item"><a href="#f803">How could I use MATLAB interface for parameter selection?</a></li>
<li class="headlines_item"><a href="#f804">How could I generate the primal variable w of linear SVM?</a></li>
<li class="headlines_item"><a href="#f805">Is there an OCTAVE interface for libsvm?</a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_sample_uses_of_libsvm"></a>
<a name="faq101"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
<li>
<a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
SVM tutorial in machine learning
summer school, University of Chicago, 2005.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q1:_Some_sample_uses_of_libsvm"></a>
<a name="faq102"><b>Q: Some applications which have used libsvm </b></a>
<br/>                                                                                
<ul>
<li><a href=http://johel.m.free.fr/demo_045.htm>
Realtime object recognition</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: Where are change log and earlier versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f209"><b>Q: What is the difference between "." and "*" outputed during training? </b></a>
<br/>                                                                                

<p>
"." means every 1,000 iterations (or every #data 
iterations is your #data is less than 1,000).
"*" means that after iterations of using
a smaller shrunk problem, 
we reset to use the whole set. See the 
<a href=../papers/libsvm.pdf>implementation document</a> for details.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f304"><b>Q: Why sometimes the last line of my data is not read by svm-train?</b></a>
<br/>                                                                                

<p>
We assume that you have '\n' in the end of
each line. So please press enter in the end
of your last line.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f305"><b>Q: Is there a program to check if my data are in the correct format?</b></a>
<br/>                                                                                

<p>
The svm-train program in libsvm conducts only a simple check of the input data. To do a
detailed check, after libsvm 2.85, you can use the python script tools/checkdata.py. See tools/README for details.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f306"><b>Q: May I put comments in data files?</b></a>
<br/>                                                                                

<p>
No, for simplicity we don't support that.
However, you can easily preprocess your data before
using libsvm. For example,
if you have the following data
<pre>
test.txt
1 1:2 2:1 # proten A
</pre>
then on unix machines you can do
<pre>
cut -d '#' -f 1 < test.txt > test.features
cut -d '#' -f 2 < test.txt > test.comments
svm-predict test.feature train.model test.predicts
paste -d '#' test.predicts test.comments | sed 's/#/ #/' > test.results
</pre>
<p align="right">

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
狠狠色狠狠色综合系列| 成人精品一区二区三区四区 | 日韩欧美一区二区三区在线| 久久久久久久综合| 亚洲一区二区三区三| 久久成人免费电影| 欧美美女激情18p| 国产精品久久久久影视| 日本不卡高清视频| 91成人看片片| 国产清纯白嫩初高生在线观看91| 亚洲香蕉伊在人在线观| www.欧美亚洲| 久久婷婷国产综合精品青草| 国产精品自在欧美一区| 欧美日韩色一区| 亚洲另类中文字| 成人涩涩免费视频| 久久蜜桃一区二区| 韩国午夜理伦三级不卡影院| 欧美日韩美少妇| 五月天中文字幕一区二区| 一本到不卡精品视频在线观看| 国产午夜精品美女毛片视频| 久久精品99久久久| 精品成人a区在线观看| 日韩电影免费在线| 欧美二区三区91| 亚洲午夜电影在线| 欧美日韩一二区| 亚洲成a人在线观看| 欧美三级午夜理伦三级中视频| 中文字幕一区二区三中文字幕| 国产一区二区三区在线看麻豆| 欧美成人欧美edvon| 久久国产精品99精品国产 | 狠狠色丁香久久婷婷综| 日韩亚洲电影在线| 精品一区二区三区的国产在线播放| 91精品国产乱| 色综合久久久久综合体| 亚洲一二三专区| 4438x亚洲最大成人网| 免费成人深夜小野草| 欧美刺激午夜性久久久久久久| 麻豆中文一区二区| 欧美精品一区二| 成人午夜大片免费观看| 亚洲女同ⅹxx女同tv| 欧美色精品在线视频| 午夜久久久久久电影| 久久综合久久鬼色中文字| 大尺度一区二区| 中文字幕日本乱码精品影院| 色成年激情久久综合| 五月婷婷激情综合网| 国产亚洲欧美一区在线观看| 99久久综合狠狠综合久久| 亚洲精品免费在线| 日韩一区二区三区视频| 国产精品一品视频| 亚洲人成精品久久久久| 欧美蜜桃一区二区三区| 国产精品资源在线观看| 一区二区在线看| 欧美成人精精品一区二区频| 高潮精品一区videoshd| 亚洲最大成人网4388xx| 欧美电影免费观看高清完整版在线| 欧美三级中文字| 国产精品亚洲一区二区三区妖精| 国产精品福利一区| 欧美性猛交xxxxxx富婆| 激情欧美一区二区| 亚洲一区视频在线| 精品88久久久久88久久久| 色婷婷av一区二区三区大白胸| 美女视频免费一区| 亚洲精品成人悠悠色影视| 亚洲精品一区二区三区福利| 日本乱码高清不卡字幕| 国产一区二区精品在线观看| 午夜精品久久久久久久久久久 | 久久97超碰国产精品超碰| 亚洲欧洲无码一区二区三区| 在线不卡免费欧美| 色综合天天天天做夜夜夜夜做| 免费三级欧美电影| 亚洲在线观看免费| 国产精品乱码久久久久久| 欧美一区二区视频观看视频| 日本韩国欧美三级| 成人福利视频在线看| 国产综合色在线视频区| 视频在线观看一区| 亚洲欧美综合另类在线卡通| 久久免费视频色| 精品久久久久一区| 777奇米四色成人影色区| 色噜噜偷拍精品综合在线| 国产成人啪免费观看软件| 免费欧美日韩国产三级电影| 亚洲丝袜精品丝袜在线| 中文字幕精品一区| 久久久99精品免费观看不卡| 日韩一级视频免费观看在线| 欧美日韩中文国产| 欧美主播一区二区三区美女| 色老头久久综合| 一本久道久久综合中文字幕| 91丨porny丨在线| 99re亚洲国产精品| 99精品欧美一区二区三区小说 | 亚洲视频综合在线| 国产精品国产三级国产aⅴ入口 | 欧美一区二区日韩一区二区| 欧美亚洲国产怡红院影院| 91丨九色丨蝌蚪富婆spa| kk眼镜猥琐国模调教系列一区二区| 国产精品一二三在| 国产伦精品一区二区三区免费迷 | 亚洲成av人影院在线观看网| 一区二区三区在线观看国产| 亚洲精品水蜜桃| 亚洲国产精品尤物yw在线观看| 午夜私人影院久久久久| 青青草成人在线观看| 蜜臀av性久久久久蜜臀av麻豆| 奇米在线7777在线精品| 精品无人码麻豆乱码1区2区 | 性欧美大战久久久久久久久| 亚洲第一激情av| 日本va欧美va精品| 国内外精品视频| 成人午夜私人影院| 日本久久一区二区三区| 欧美日韩另类国产亚洲欧美一级| 欧美一区二区在线观看| 久久久高清一区二区三区| 国产精品乱码妇女bbbb| 亚洲午夜三级在线| 久久成人久久爱| eeuss鲁片一区二区三区在线观看 eeuss鲁片一区二区三区在线看 | 又紧又大又爽精品一区二区| 亚洲综合男人的天堂| 日产国产高清一区二区三区| 国产美女久久久久| 91蝌蚪国产九色| 91精品国产综合久久蜜臀| 久久久久久免费| 夜色激情一区二区| 精品一区二区三区在线视频| 成人高清伦理免费影院在线观看| 欧美日韩视频第一区| 国产欧美一区二区三区鸳鸯浴| 亚洲美女免费在线| 日韩av电影天堂| 成人国产一区二区三区精品| 欧美日韩色综合| 亚洲国产精品黑人久久久| 亚洲国产精品嫩草影院| 国产在线视视频有精品| 91久久一区二区| 精品国产一区二区国模嫣然| 亚洲另类春色校园小说| 久99久精品视频免费观看| 91麻豆免费在线观看| 欧美sm美女调教| 亚洲午夜久久久久| 成人午夜电影久久影院| 亚洲精品一线二线三线无人区| 亚洲综合清纯丝袜自拍| 国产成人av一区二区三区在线观看| 在线视频综合导航| 国产精品久久影院| 国产一区二区伦理片| 欧美一区二区三区四区五区 | 国产米奇在线777精品观看| 欧美网站大全在线观看| 国产精品卡一卡二卡三| 国产麻豆精品95视频| 日韩欧美国产一区在线观看| 亚洲伊人伊色伊影伊综合网| 成人av电影在线观看| 久久综合视频网| 蜜桃视频第一区免费观看| 欧美午夜一区二区三区| 亚洲视频每日更新| 粉嫩在线一区二区三区视频| 欧美一区二区三区的| 亚洲va欧美va人人爽| 91行情网站电视在线观看高清版| 欧美高清一级片在线观看| 国产高清无密码一区二区三区| 日韩免费高清av| 久久99久久精品| 精品欧美久久久| 久久成人免费电影| 久久人人97超碰com| 国产精品资源在线看|