?? addhinfex1.m
字號(hào):
function AddHinfEx1
Q = 1;
R = 1;
thetaMin = 0;
thetaMax = 1;
dtheta = 0.01;
KArr = [];
PArr = [];
for theta = thetaMin : dtheta : thetaMax
c(1) = theta^2 - theta^4 * R;
c(2) = Q * theta^4 * R - Q * theta^2 + R * theta^2 - 1;
c(3) = Q * (1 - 2 * theta^2 * R);
c(4) = Q * R;
Pall = roots(c);
% Find a real positive root of the ARE that results in a stable estimator.
P = inf;
for i = 1 : length(Pall)
if abs(theta^2 * Pall(i) - 1) < 1e-12
continue;
end
Pa = Pall(i) / (1 - theta^2 * Pall(i));
V = R + Pa;
Fhat = 1 - Pa / V;
if isreal(Pall(i)) && (Pall(i) >= 0) && (Pall(i) < P) && (abs(Fhat) < 1)
P = Pall(i);
K = Pa / V;
end
end
if P == inf
thetaMax = theta - dtheta;
break;
end
PArr = [PArr P];
KArr = [KArr K];
end
close all;
theta = thetaMin : dtheta : thetaMax;
figure;
plot(theta, KArr);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('H_\infty performance bound \theta'); ylabel('Estimator gain K');
figure;
plot(theta, PArr);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('H_\infty performance bound \theta'); ylabel('Kalman performance bound P');
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -