?? linesearchforthewolfeconditions.java
字號:
} if (linearFunctionDerivativeInAlphaj * (alphaHigh-alphaLow) >= 0) { alphaHigh = alphaLow; linearFunctionInAlphaHigh = linearFunctionInAlphaLow; //linearFunctionDerivativeInAlphaHigh = linearFunctionDerivativeInAlphaLow; } alphaLow = alphaj; linearFunctionInAlphaLow = linearFunctionInAlphaj; linearFunctionDerivativeInAlphaLow = linearFunctionDerivativeInAlphaj; dfInAlphaLow = dfInAlphaj; } //logger.debug("AlphaLow = " + alphaLow + ", AlphaHigh = " + alphaHigh); //logger.debug("linearFunctionInAlphaLow = " + linearFunctionInAlphaLow + ", linearFunctionInAlphaHigh = " + linearFunctionInAlphaHigh); functionEvaluationNumber = functionEvaluationNumber + 1; //logger.debug("functionEvaluationNumber = " + functionEvaluationNumber); if ((functionEvaluationNumber == 10) | (Math.abs(linearFunctionInAlphaHigh - linearFunctionInAlphaLow) <= 0.000001) | (Math.abs(alphaLow - alphaHigh) <= 0.000000000001)) { //logger.debug("ZOOM WAS TERMINATE EARLIER"); /*System.out.println("functionEvaluationNumber = " + functionEvaluationNumber + ", Math.abs(linearFunctionInAlphaHigh - linearFunctionInAlphaLow) = " + Math.abs(linearFunctionInAlphaHigh - linearFunctionInAlphaLow) + ", Math.abs(alphaLow - alphaHigh) = " + Math.abs(alphaLow - alphaHigh));*/ this.alphaOptimum = alphaLow; this.linearFunctionInAlphaOptimum = linearFunctionInAlphaLow; this.dfOptimum = dfInAlphaLow; //logger.debug("(functionEvaluationNumber == 10) | (Math.abs(linearFunctionInAlphaHigh - linearFunctionInAlphaLow) <= 0.000001) | (Math.abs(alphaLow - alphaHigh) <= 0.0000001)"); //logger.debug("zoom end -> this.alphaOptimum = " + this.alphaOptimum); //logger.debug("zoom end -> this.linearFunctionInAlphaOptimum = " + this.linearFunctionInAlphaOptimum); break; } } while ((Math.abs(linearFunctionInAlphaHigh - linearFunctionInAlphaLow) > 0.000001) & (functionEvaluationNumber < 10) & (Math.abs(alphaLow - alphaHigh) > 0.000000000001)); //logger.debug("zoom end"); return; } /* * Cubic interpolation in the interval [a,b] known to contain desirable step length * and given two previous step length estimates in this interval. * *@param alphai Previous step length. *@param linearFunctionInAlphai Function value at the previous step length alphai. *@param linearFunctionDerivativeInAlphai Derivative at the previous step length alphai. *@param alphaiMinus1 Previous step length. *@param linearFunctionInAlphaiMinus1 Function value at the previous step length alphaiMinus1. *@param linearFunctionDerivativeInAlphaiMinus1 Derivative value at the previous step length alphaiMinus1. *@param a Inferior value of the interval [a,b]. *@param b Superior value of the interval [a,b]. * * @return Cubic interpolation in the interval [a,b] */ public double cubicInterpolation(double alphai, double linearFunctionInAlphai, double linearFunctionDerivativeInAlphai, double alphaiMinus1, double linearFunctionInAlphaiMinus1, double linearFunctionDerivativeInAlphaiMinus1, double a, double b) { //logger.debug("The interval [" + a + ", " + b + "] contains acceptable step lengths."); if (alphai < alphaiMinus1) { this.alphaTemporal = alphai; this.linearFunctionInAlphaTemporal = linearFunctionInAlphai; this.linearFunctionDerivativeInAlphaTemporal = linearFunctionDerivativeInAlphai; alphai = alphaiMinus1; linearFunctionInAlphai = linearFunctionInAlphaiMinus1; linearFunctionDerivativeInAlphai = linearFunctionDerivativeInAlphaiMinus1; alphaiMinus1 = this.alphaTemporal; linearFunctionInAlphaiMinus1 = this.linearFunctionInAlphaTemporal; linearFunctionDerivativeInAlphaiMinus1 = this.linearFunctionDerivativeInAlphaTemporal; } this.d1 = linearFunctionDerivativeInAlphaiMinus1 + linearFunctionDerivativeInAlphai - 3 * ((linearFunctionInAlphaiMinus1 - linearFunctionInAlphai)/(alphaiMinus1 - alphai)); //logger.debug("d1 = " + d1); //logger.debug("linearFunctionDerivativeInAlphaiMinus1 = " + linearFunctionDerivativeInAlphaiMinus1); //logger.debug("linearFunctionDerivativeInAlphai = " + linearFunctionDerivativeInAlphai); this.d2 = Math.sqrt(Math.abs(Math.pow(d1,2) - linearFunctionDerivativeInAlphaiMinus1 * linearFunctionDerivativeInAlphai)); //logger.debug("d2 = " + d2); this.alphaiplus1 = alphai-(alphai-alphaiMinus1) * ((linearFunctionDerivativeInAlphai + d2 - d1) / (linearFunctionDerivativeInAlphai - linearFunctionDerivativeInAlphaiMinus1 + 2 * d2)); //logger.debug("alphaiplus1 = " + alphaiplus1); if (alphaiplus1 < a) {alphaiplus1 = a;} if (alphaiplus1 > b) {alphaiplus1 = b;} //logger.debug("alphaiplus1 = " + alphaiplus1); if (Math.abs(alphaiplus1 - alphai) < 0.000000001) { /*System.out.println("We reset alphaiplus1 = (alphaiMinus1 + alphai) / 2, because alphaiplus1 = " + alphaiplus1 + " is too close to its predecessor " + "alphaiMinus1 = " + alphaiMinus1); */ alphaiplus1 = (alphaiMinus1 + alphai) / 2; } else {if (alphaiplus1 < (alphai - 9 * (alphai-alphaiMinus1) / 10)) { //logger.debug("We reset alphaiplus1 = (alphaiMinus1 + alphai) / 2, because alphaiplus1 = " + alphaiplus1 + " is too much smaller than alphai = " + alphai); alphaiplus1 = (alphaiMinus1 + alphai) / 2;; } } return alphaiplus1; } /* * The aim is to find a value of alpha that satisfies the sufficient decrease condition, without being too small. * The procedures generate a value alphai such that is not too much smaller than its predecesor alphai-1. * The interpolation in the first is quadratic but if the sufficient decrease condition is not satisfied * then the interpolation is cubic. * * @param alphaLow Among all step lengths generated so far and satisfying the sufficient decrease condition, the one giving the smallest function value. * @param linearFunctionInAlphaLow Energy function value at alphaLow. * @param linearFunctionDerivativeInAlphaLow Derivative value at alphaLow. * @param alphaHigh AlphaHigh is chosen so that linearFunctionDerivativeInAlphaj * (alphaHigh-alphaLow) < 0 * @param linearFunctionInAlphaHigh Energy function value at alphaHigh. * @return Value of alpha that satisfies the sufficient decrease condition, without being too small. */ private double interpolation(double alphaLow, double linearFunctionInAlphaLow, double linearFunctionDerivativeInAlphaLow, double alphaHigh, double linearFunctionInAlphaHigh) { double minAlpha = Math.min(alphaLow, alphaHigh); double alphaDiff = Math.abs(alphaHigh - alphaLow); double alphaInterpolation; //logger.debug("We form a quadratic approximation to the linear function"); double alpha1 = -1 * ((linearFunctionDerivativeInAlphaLow * Math.pow(alphaDiff,2)) / (2 * (linearFunctionInAlphaHigh - linearFunctionInAlphaLow - linearFunctionDerivativeInAlphaLow * alphaDiff))); //logger.debug("The value alpha1 = " + alpha1 + ", is the minimizer of this quadratic function"); if ((alpha1 > alphaDiff) | (Math.abs(alpha1 - alphaDiff) < 0.000000001)) { if (alpha1 < 1E-7) {} else { /*System.out.println("We reset alpha1 = alphaDiff / 2, because alphaInterpolation = " + alpha1 + " is too close to its predecessor " + "alphaiMinus1 = " + alphaDiff); */ alpha1 = alphaDiff / 2; } } else { if ((alpha1 < 0) & (alpha1 < (alphaDiff - 9 * alphaDiff / 10))) { if (alpha1 < 1E-7) {} else { //logger.debug("We reset alphai = alphaiMinus1 / 2, because alphaInterpolation = " + alpha1 + " is too much smaller than alphaiMinus1 = " + alphaDiff); alpha1 = alphaDiff / 2; } } } //logger.debug("alpha1 = " + alpha1); alphaInterpolation = minAlpha + alpha1; this.linearFunctionAlphaInterpolation = this.evaluateEnergyFunction(alphaInterpolation); //logger.debug("alphaInterpolation = " + alphaInterpolation); //logger.debug("linearFunctionAlphaInterpolation = " + this.linearFunctionAlphaInterpolation); if (this.linearFunctionAlphaInterpolation <= this.linearFunctionInAlpha0 + this.c1 * (alphaInterpolation) * this.linearFunctionDerivativeInAlpha0) { //logger.debug("The sufficient decrease condition is satisfied at alpha1 and we termine the interpolation"); } else { //double alphaiMinus2; //double alphaiMinus1 = alphaDiff; //double linearFunctionInAlphaiMinus2; //double linearFunctionInAlphaiMinus1 = linearFunctionInAlphaHigh; double alphai; // = alpha1; //double linearFunctionInAlphai = this.linearFunctionAlphaInterpolation; //do { //alphaiMinus2 = alphaiMinus1; //alphaiMinus1 = alphai; //linearFunctionInAlphaiMinus2 = linearFunctionInAlphaiMinus1; //linearFunctionInAlphaiMinus1 = linearFunctionInAlphai; //logger.debug("We construct a cubic function that interpolates the fours pieces of information"); a = 1/(Math.pow(alphaDiff,2) * Math.pow(alpha1, 2) * (alpha1-alphaDiff)); b = a; a = a * (Math.pow(alphaDiff,2) * (this.linearFunctionAlphaInterpolation - linearFunctionInAlphaLow - linearFunctionDerivativeInAlphaLow * alpha1) + (-Math.pow(alpha1,2)) * (linearFunctionInAlphaHigh - linearFunctionInAlphaLow - linearFunctionDerivativeInAlphaLow * alphaDiff)); b = b * (- Math.pow(alphaDiff,3) * (this.linearFunctionAlphaInterpolation - linearFunctionInAlphaLow - linearFunctionDerivativeInAlphaLow * alpha1) + Math.pow(alpha1,3) * (linearFunctionInAlphaHigh - linearFunctionInAlphaLow - linearFunctionDerivativeInAlphaLow * alphaDiff)); //logger.debug("a = " + a); //logger.debug("b = " + b); alphai = (-b + Math.sqrt(Math.pow(b,2) - 3 * a * linearFunctionDerivativeInAlphaLow)) / (3 * a); //logger.debug("alphai = " + alphai); if (Math.abs(alphai - alpha1) < 0.000000001) { /*System.out.println("We reset alphai = alpha1 / 2, because alphaInterpolation = " + alphai + " is too close to its predecessor " + "alpha1 = " + alpha1); */ alphai = alpha1 / 2; } else {if (alphai < (alpha1 - 9 * alpha1 / 10)) { //logger.debug("We reset alphai = alpha1 / 2, because alphaInterpolation = " + alphai + " is too much smaller than alpha1 = " + alpha1); alphai = alpha1 / 2; } } alphaInterpolation = minAlpha + alphai; this.linearFunctionAlphaInterpolation = this.evaluateEnergyFunction(alphaInterpolation); //logger.debug("alphaInterpolation = " + alphaInterpolation); //logger.debug("linearFunctionAlphaInterpolation = " + this.linearFunctionAlphaInterpolation); //functionEvaluationNumber = functionEvaluationNumber + 1; /*} while (((linearFunctionInAlphai > linearFunctionInAlphaLow + this.c1 * (alphaLow + alphai) * linearFunctionDerivativeInAlphaLow) & (functionEvaluationNumber < 5)) | ((linearFunctionInAlphai - this.linearFunctionAlphaInterpolation) < 0.00000001) | ((alphai - alpha1) < 0.00000001));*/ } return alphaInterpolation; } /**Evaluate the energy function from an alpha value, using the current coordinates and the current direction. * * @param alpha * @return Energy function value. */ private double evaluateEnergyFunction(double alpha) { //logger.debug("alpha= " + alpha); this.xAlpha.set(this.x); //logger.debug("xAlpha = " + xAlpha); GVector directionStep = direction; //logger.debug("directionStep = " + directionStep); xAlpha.scaleAdd(alpha, directionStep, xAlpha); //logger.debug("xAlpha = " + xAlpha); double fxAlpha = pf.energyFunction(xAlpha); //logger.debug("fxAlpha = " + fxAlpha); return fxAlpha; } /**Evaluate the gradient of the energy function from an alpha value, * using the current coordinates and the current direction. * * @param alpha Alpha value for the one-dimensional problem generate from the current coordinates and the current direction. * @return Gradient of the energy function at alpha. */ private GVector evaluateEnergyFunctionDerivative(double alpha) { //logger.debug("alpha= " + alpha); this.xAlpha.set(this.x); //logger.debug("xAlpha = " + xAlpha); GVector directionStep = direction; //logger.debug("directionStep = " + directionStep); xAlpha.scaleAdd(alpha, directionStep, xAlpha); //logger.debug("xAlpha = " + xAlpha); pf.setEnergyGradient(xAlpha); GVector dfxAlpha = pf.getEnergyGradient(); //logger.debug("dfxAlpha = " + dfxAlpha); return dfxAlpha; } /** * From the interval [a, b] that bracket the minimum, evaluates the energy function at an intermediate point x * and obtain a new, smaller bracketing interval, either (a,x) or (x,b). * * @param lambdaMin a * @param flambdaMin Energy function at a. * @param lambdaMax b * @param flambdaMax Energy function at b. * @return An intermediate point x */ /*private double goldenSectionMethod(double lambdaMin, double flambdaMin, double lambdaMax, double flambdaMax) { //logger.debug("Golden Section Search"); double goldenLambda; double lambda1 = lambdaMin; double lambda4 = lambdaMax; double lambda2 = lambda1 + 0.3819660112 * (lambda4 - lambda1); double lambda3 = lambda1 + 0.6180339887498948482 * (lambda4 - lambda1); //double flambda1 = flambdaMin; double flambda2 = evaluateEnergyFunction(lambda2); double flambda3 = evaluateEnergyFunction(lambda3); //double flambda4 = flambdaMax; //logger.debug("lambda1 = " + lambda1 + ", flambda1 = " + flambda1); //logger.debug("lambda2 = " + lambda2 + ", flambda2 = " + flambda2); //logger.debug("lambda3 = " + lambda3 + ", flambda3 = " + flambda3); //logger.debug("lambda4 = " + lambda4 + ", flambda4 = " + flambda4); if (flambda2 < flambda3) { //we can bracket the minimum by the interval [lambda1, lambda3] goldenLambda = lambda2; linearFunctionGoldenAlpha = flambda2; } else { //we can bracket the minimum by the interval [lambda2, lambda4] goldenLambda = lambda3; linearFunctionGoldenAlpha = flambda3; } return goldenLambda; }*/}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -