?? sparsesvd_pade.c
字號:
/* Main functionsparse_rank_one(double *Amat, int n, double rho, double tol, int MaxIter, double *Xmat, double *Umat, double *uvec, double *Fmat, int WarmStart, int info) SPARSERANKONE finds a sparse rank-one approximation to a given symmetric matrix A, by solving the SDPmin_U lambda_max(A+X) : X = X', abs(X(i,j)) <= rho, 1<=i,j<= nand its dual:max_X Tr(UA) - rho sum_ij |U_ij| : U=U', U \succeq 0, Tr(U)=1*** inputs: ***A nxn symmetric matrix (left unchanged)n problem sizerho non-negative scalar gapchange required change in gap from first gap (default: 1e-4)
MaxIter maximum number of iterationsinfo controls verbosity: 0 silent, n>0 frequency of progress reportWarmStart 0 if cold start, k0 if WarmStart (total number of iterations in previous run)F Average gradient (for warm start, Fmat is updated)*** outputs: ***X symmetric matrix that solves the above SDP U dual variable, solves the dual SDP u largest eigenvector of U F Average gradientk number of iterations run
This code implements Nesterov's smooth minimization algorithm. See: Y. Nesterov "Smooth Minimization of NonSmooth Functions", CORE DP 2003/12. Last Modified: A. d'Aspremont, Laurent El Ghaoui, Ronny Luss July 2006.http://www.carva.org/alexandre.daspremont*/#include "sparsesvd.h"void sparse_rank_one_pade(double *Amat, int n, double rho, double gapchange, int MaxIter, double *Xmat, double *Umat, double *uvec, double *Fmat, double *iters, int info, int checkgap, double *dualitygap_alliter, double *cputime_alliter)
{ // Hard parameters int Nperiod=imaxf(1,info),changedmu=0; int work_size=3*n+n*n; double d1,sig1,d2,sig2,norma12,mu,Ntheo,L; double alpha,gapk,first_gapk0; double dmax=0,fmu,lambda; int n2=n*n,incx=1,precision_flag=0,iteration_flag=0,error_flag=0; int lwork,inflapack,indmax,k=0,i,j; double cputime,last_time=(double)clock();double start_time=(double)clock();int left_h=0,left_m=0,left_s=0; char jobz[1],uplo[1],tolerancestr[100]; double *Vmat=(double *) calloc(n*n,sizeof(double)); double *bufmata=(double *) calloc(n*n,sizeof(double)); double *bufmatb=(double *) calloc(n*n,sizeof(double)); double *Dvec=(double *) calloc(n,sizeof(double)); double *workvec=(double *) calloc(work_size,sizeof(double)); double *gvec=(double *) calloc(n,sizeof(double)); double *hvec=(double *) calloc(n,sizeof(double)); int ideg=6,work_size2=4*n*n+ideg+1;
int *work_in=(int *) calloc(n,sizeof(int));
double *work_out=(double *) calloc(work_size2,sizeof(double)); double trace,bufmata_shift=0.0,tol=.01;
int work_size3=8*n;
double *workvec2=(double *) calloc(work_size3,sizeof(double));
double *numeigs_matlab=(double *) calloc(1,sizeof(double));
double *evalue=(double *) calloc(1,sizeof(double));
int *iwork=(int *) calloc(5*n,sizeof(int));
mxArray *input[1],*output[1];
double *Fmattemp=(double *) calloc(n*n,sizeof(double));
double *Xmattemp=(double *) calloc(n*n,sizeof(double));
int checkgap_count=0; // added for test variables
double tolerance;
char which[2]="LA"; // Arpack: we want largest algebraic eigs...
int ncv=2,nconv,nummatvec,info_arpack,maxitr_arpack=1000;
double *evector_temp=(double *) calloc(n,sizeof(double)); // only one eigenvector
mxArray *input_eigs[4],*output_eigs[3];
// Start... if (info>=1) { mexPrintf("DSPCA starting ... \n"); mexEvalString("drawnow;"); } // Test malloc results if ((Fmat==NULL) || (Vmat==NULL) || (bufmata==NULL) || (bufmatb==NULL) || (Dvec==NULL) || (workvec==NULL) || (gvec==NULL) || (hvec==NULL)||(work_in==NULL)||(work_out==NULL)||(workvec2==NULL)||(numeigs_matlab==NULL)||(evalue==NULL)||(iwork==NULL)||(Fmattemp==NULL)||(Xmattemp==NULL)) { mexPrintf("DSPCA: memory allocation failed ... \n"); mexEvalString("drawnow;");return; } input[0] = mxCreateDoubleMatrix(n,n,mxREAL); // for use in calling Matlab function expm
mexEvalString("options.disp=0\;"); // for use in calling Matlab function eigs
mexEvalString("options.maxit=500\;"); // for use in calling Matlab function eigs
input_eigs[0] = mxCreateDoubleMatrix(n,n,mxREAL);
input_eigs[1] = mxCreateDoubleMatrix(1,1,mxREAL);
*numeigs_matlab=1.0;
memcpy(mxGetPr(input_eigs[1]),numeigs_matlab,sizeof(double));
input_eigs[2]=mxCreateString("la");
input_eigs[3]=mexGetVariable("caller","options");
// First, compute some local params d1=rho*rho*n*n/2.0;sig1=1.0;d2=log(n);sig2=0.5;norma12=1.0;mu=tol/(2.0*d2); Ntheo=(4.0*norma12*sqrt(d1*d2/(sig1*sig2)))/tol;Ntheo=ceil(Ntheo); L=(d2*norma12*norma12)/(2.0*sig2*tol);
alpha=0.0;cblas_dscal(n2,alpha,Xmat,incx); cputime=start_time; while ((precision_flag+iteration_flag+error_flag)==0) {
if (k==1 && changedmu==0) { // after 1st iteration and when algorithm hasn't been restarted, adjust tol to be a percentage change in original gap
gapk=dmax-doubdot(Amat,Umat,n2)+rho*doubasum(Umat,n2);
tol=gapchange*gapk;
mu=tol/(2.0*d2);
L=(d2*norma12*norma12)/(2.0*sig2*tol);
alpha=0.0;cblas_dscal(n2,alpha,Xmat,incx);
alpha=0.0;cblas_dscal(n2,alpha,Fmat,incx);
k=0;
changedmu=1;
}
// eigenvalue decomposition of A+X cblas_dcopy(n2,Xmat,incx,Vmat,incx); alpha=1.0; cblas_daxpy(n2,alpha,Amat,incx,Vmat,incx); // do pade approximation to exp(A+X) symmetrize(Vmat,bufmata,n); // symmetrize A+X so no precision problems
cblas_dcopy(n2,bufmata,incx,Vmat,incx);
bufmata_shift=frobnorm(bufmata,n);// simple bound on largest magnitude eigenvalue
//i=1;tolerance=.0001/bufmata_shift;
//info_arpack=simarpack(bufmata,n,i,ncv,tolerance,which,maxitr_arpack,0,evalue,evector_temp,&nconv,&nummatvec);
//if (info_arpack<0) {
sprintf(tolerancestr,"options.tol=%.15f;",.0001/bufmata_shift); // this will be the tolerance parameter for eigs
mexEvalString(tolerancestr);
memcpy(mxGetPr(input_eigs[0]),bufmata,n*n*sizeof(double));
mexCallMATLAB(3,output_eigs,4,input_eigs,"eigs");
memcpy(evalue,mxGetPr(output_eigs[1]),sizeof(double));
//}
dmax=evalue[0];
for (i=0;i<n;i++) {bufmata[i*n+i]-=dmax;}
alpha=1.0/mu;cblas_dscal(n2,alpha,bufmata,incx);
memcpy(mxGetPr(input[0]),bufmata,n*n*sizeof(double));
mexCallMATLAB(1,output,1,input,"expm");
memcpy(Umat,mxGetPr(output[0]),n*n*sizeof(double));
mxDestroyArray(output[0]);
trace=0.0;for (i=0;i<n;i++){trace+=Umat[i*n+i];}
fmu=dmax+mu*log(trace)-mu*log(n);
alpha=1.0/trace;cblas_dscal(n2,alpha,Umat,incx);
// update gradient's weighted average
alpha=((double)(k)+1)/2.0;
cblas_daxpy(n2,alpha,Umat,incx,Fmat,incx);
// find a projection of X-Gmu/L on feasible set cblas_dcopy(n2,Xmat,incx,bufmata,incx); alpha=-1/L;
cblas_daxpy(n2,alpha,Umat,incx,bufmata,incx); // project again alpha=-(sig1/L);
cblas_dcopy(n2,Fmat,incx,bufmatb,incx); cblas_dscal(n2,alpha,bufmatb,incx); // update X lambda=2.0/((double)(k)+3); for (j=0;j<n;j++){ for (i=0;i<n;i++){ Xmat[j*n+i]=lambda*dsignf(bufmatb[j*n+i])*dminif(rho,dabsf(bufmatb[j*n+i]))+(1-lambda)*dsignf(bufmata[j*n+i])*dminif(rho,dabsf(bufmata[j*n+i]));}}
// check convergence and gap periodically
cputime=((double)clock()-start_time)/CLOCKS_PER_SEC;
if ((changedmu==1)&&((k%checkgap==0)||(k%Nperiod==0)||(((double)(clock())/CLOCKS_PER_SEC-last_time)>=900))){
gapk=dmax-doubdot(Amat,Umat,n2)+rho*doubasum(Umat,n2);
dualitygap_alliter[checkgap_count]=gapk;cputime_alliter[checkgap_count]=cputime;checkgap_count++;
last_time=(double)(clock())/CLOCKS_PER_SEC;
if (gapk<=tol) precision_flag=1;
if (k>=MaxIter) iteration_flag=1;
// report iteration, gap and time left
if (((info>=1)&&(k%Nperiod==0))||(precision_flag==1)||iteration_flag==1){
left_h=(int)floor(cputime/3600);left_m=(int)floor(cputime/60-left_h*60);left_s=(int)floor(cputime-left_h*3600-left_m*60);
mexPrintf("Iter.: %.3e Obj: %.4e Gap: %.4e CPU Time: %2dh %2dm %2ds\n",(double)(k),dmax,gapk,left_h,left_m,left_s);
mexEvalString("drawnow;");}
}
k++; } // set dual variable and output vector // eigenvalue decomposition of A+X alpha=0.0; cblas_dscal(n2,alpha,Vmat,incx); cblas_dcopy(n2,Umat,incx,Vmat,incx); *jobz='V';*uplo='U';lwork=work_size; dsyev(jobz,uplo,&n,Vmat,&n,Dvec,workvec,&lwork,&inflapack); indmax=idxmax(Dvec,n);dmax=Dvec[indmax]; for (i=0;i<n;i++) {uvec[i]=Vmat[(indmax)*n+i];} // Return total number of iterations
*iters=k;
// Free everything free(Vmat); free(bufmata); free(bufmatb); free(Dvec); free(workvec); free(workvec2);
free(gvec); free(hvec); free(iwork);
free(numeigs_matlab);
free(evalue);
free(evector_temp);
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -