亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme.txt

?? 該代碼用c++語言實現了KSVD算法,運行環境為vc6.0
?? TXT
字號:
% =========================================================================
%                              KSVD - Toolbox
% =========================================================================

The K-SVD is a new algorithm for training dictionaries for linear
representation of signals. Given a set of signals, the K-SVD tries to
extract the best dictionary that can sparsely represent those signals. 

Thorough discussion concerning the K-SVD algorithm can be found in:
"The K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for 
Sparse Representation", written by M. Aharon, M. Elad, and A.M. Bruckstein, 
and appeared in the IEEE Trans. On Signal Processing, Vol. 54, no. 11, 
pp. 4311-4322, November 2006. 

In this toolbox you can find the following files:
================================================

1. KSVD - the main file in this toolbox that implements the KSVD algorithm. Input and output parameters are described inside.
2. KSVD_NN - a variation of the KSVD algorithm for non-negative matrix factorization (non-negative dictionary and coefficients).
  
The following 3 files implements denoising according to 3 different methods described in "Image Denoising Via Sparse and Redundant 
           representations over Learned Dictionaries", appeared in the IEEE Trans. on Image Processing, Vol. 15, no. 12, 
           pp. 3736-3745, December 2006. 
===================================================================================================================================

3. denoiseImageDCT - denoising of an image using an overcomplete DCT dictionary.
4. denoiseImageGlobal - denoising of an image using a global trained dictionary. The global dictionary is stored in 
           the file 'globalTrainedDictionary.mat', which must exist in the directory. Alternatively, this function can be
           used for denoising of images using some other dictionary, for example, a dictionary that was trained by the 
           K-SVD algorithm, executed by the user.
5. denoiseImageKSVD - denoising of an image using a dictionary trained on noisy patches of the image.

The following 3 files are demo files that can be executed without any parameters,
================================================================================

6. demo1 - run file that executes synthetic test to validate the K-SVD algorithm (the same synthetic test that was presented in the paper).
7. demo2 - run file that executes denoising by 3 different methods, all described in "Image Denoising Via Sparse and Redundant 
           representations over Learned Dictionaries", appeared in the IEEE Trans. on Image Processing, Vol. 15, no. 12, 
           pp. 3736-3745, December 2006. 
8. demo3 - run file that executes synthetic test to validate the non-negative variation of the KSVD algorithm (the same test is presented
           in "K-SVD and its non-negative variant for dictionary design", written by M. Aharon, M. Elad, and A.M. Bruckstein 
           and appeared in the Proceedings of the SPIE conference wavelets, Vol.  5914, July 2005. 

The rest of the files assist the above files:
============================================

9. gererateSyntheticDictionaryAndData - Generates a random dictionary according to the parameters, and then generates signals as 
           sparse combinations of the atoms of this dictionary. Finally, it adds while Gaussian noise with a given s.d.
10. displayDictionaryElementsAsImage - displays the atoms of a dictionary as blocks for presentation purposes (see for example, 
           figure 5 in the paper "The K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation".
11. my_im2col - similar to the function 'im2col', only allow defining the sliding distance between the blocks.

The following 3 files implements the OMP (orthogonal matching pursuit) algorithm and the non-negative basis pursuit algorithm. 
This algorithm is used by the above KSVD and NN-KSVD functions. 
However, different sparse coding functions (or, implementations) may also be used by changing the relevant call in the KSVD file.
====================================================================================================================================

12. OMP - OMP algorithm. Finds a representation with fixed number of coefficients for each signal.
13. OMPerr - OMP algorithm. Finds a representation to the signals, allowing a (given) maximal representation error for each.
14. NN_BP - non-negative variation of the basis pursuit. finds a non-negative sparse representatation with a fixed number of coefficients for each signal.

For comments or questions please turn to Michal aharon (michal.aharon@hp.com) or Michael Elad (elad@cs.technion.ac.il).

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩情涩欧美日韩视频| 成人黄色小视频在线观看| 国产精品久久久久影视| 欧美成人猛片aaaaaaa| 日韩一区二区三区视频在线观看| 在线观看国产91| 色综合色综合色综合色综合色综合| 国产999精品久久久久久绿帽| 国产一区在线看| 韩国三级电影一区二区| 另类小说视频一区二区| 麻豆国产一区二区| 国模冰冰炮一区二区| 国产一区不卡精品| 成人高清视频在线观看| 国产69精品久久777的优势| 国产成人啪免费观看软件| 岛国一区二区在线观看| 99久久精品国产麻豆演员表| 91麻豆精品一区二区三区| 91成人免费在线| 制服丝袜国产精品| 日韩欧美一区二区视频| 久久久久久夜精品精品免费| 欧美高清在线精品一区| 亚洲精品va在线观看| 日本伊人色综合网| 国产精品资源在线观看| 成人av在线一区二区三区| 91国产精品成人| 欧美电影免费观看高清完整版在 | www.欧美日韩| 欧美日韩久久久久久| 精品少妇一区二区三区在线播放| 国产日韩欧美制服另类| 亚洲激情第一区| 国产一区在线观看视频| 972aa.com艺术欧美| 欧美日韩极品在线观看一区| 久久婷婷国产综合国色天香 | 在线免费观看不卡av| 日韩三级av在线播放| 又紧又大又爽精品一区二区| 精彩视频一区二区| 在线免费观看日本一区| 国产午夜精品美女毛片视频| 亚洲国产毛片aaaaa无费看 | 国产精品美女久久久久久久久 | 久久精品亚洲乱码伦伦中文| 亚洲午夜在线电影| 成人免费av网站| 精品久久一二三区| 亚洲综合在线五月| 成人18视频日本| 久久久久亚洲蜜桃| 秋霞电影一区二区| 欧美曰成人黄网| 国产女主播视频一区二区| 天堂久久久久va久久久久| 日本韩国一区二区三区视频| 久久久夜色精品亚洲| 蜜桃视频免费观看一区| 欧美视频自拍偷拍| 亚洲精品视频在线看| 成人丝袜高跟foot| 久久免费的精品国产v∧| 免费人成网站在线观看欧美高清| 色视频成人在线观看免| 亚洲视频在线一区观看| 国产成人精品aa毛片| 久久综合色婷婷| 另类综合日韩欧美亚洲| 精品欧美久久久| 麻豆传媒一区二区三区| 日韩一本二本av| 久久精品国产99国产精品| 51精品国自产在线| 日本系列欧美系列| 欧美xxxxx牲另类人与| 日韩av在线发布| 日韩一区二区三区精品视频 | 从欧美一区二区三区| 国产视频一区在线观看 | 在线观看国产一区二区| 亚洲一二三区在线观看| 欧美日韩免费一区二区三区| 性做久久久久久免费观看欧美| 91国偷自产一区二区三区成为亚洲经典 | 欧美无砖专区一中文字| 亚洲一区视频在线| 欧美精品自拍偷拍动漫精品| 日本aⅴ亚洲精品中文乱码| 欧美一三区三区四区免费在线看| 色综合久久综合网欧美综合网| 亚洲欧洲另类国产综合| 色噜噜偷拍精品综合在线| 亚洲欧美日本韩国| 欧美老肥妇做.爰bbww| 免费成人小视频| 国产精品你懂的| 色婷婷激情综合| 麻豆中文一区二区| 国产精品毛片高清在线完整版| 99久久99久久精品免费观看| 国产丶欧美丶日本不卡视频| 中文在线资源观看网站视频免费不卡| 一本高清dvd不卡在线观看| 五月婷婷另类国产| 久久久久久综合| 日本韩国欧美一区| 国产一区二区福利| 亚洲午夜日本在线观看| 久久久国产综合精品女国产盗摄| 色综合久久久网| 久久99国产精品成人| 亚洲精品亚洲人成人网在线播放| 欧美videos大乳护士334| 97久久人人超碰| 激情深爱一区二区| 亚洲国产美女搞黄色| 国产精品嫩草99a| 欧美成人精品3d动漫h| 在线亚洲免费视频| 国产成人av网站| 麻豆精品一二三| 亚洲国产精品视频| 成人欧美一区二区三区白人| 欧美电影免费观看高清完整版在线| 91在线观看成人| 国产精品白丝jk白祙喷水网站| 亚洲成人自拍偷拍| 自拍偷拍亚洲欧美日韩| 久久这里都是精品| 日韩一区二区在线看| 欧美电影在哪看比较好| 成人av在线影院| 国产.欧美.日韩| 国产精华液一区二区三区| 麻豆精品视频在线观看免费| 亚洲成av人片一区二区梦乃| 亚洲精品乱码久久久久久黑人| 欧美国产欧美综合| 久久九九99视频| 精品粉嫩超白一线天av| 91精品国产免费| 欧美精品精品一区| 欧美日产国产精品| 精品视频一区二区不卡| 在线视频欧美精品| 日本乱码高清不卡字幕| 91日韩一区二区三区| 一本大道综合伊人精品热热| 处破女av一区二区| 成人免费视频视频在线观看免费 | 久久精品这里都是精品| 337p粉嫩大胆噜噜噜噜噜91av| 91麻豆精品国产91久久久资源速度 | 久久免费偷拍视频| 久久久综合视频| 久久精品夜色噜噜亚洲aⅴ| 久久精品欧美一区二区三区不卡| 精品福利二区三区| 久久九九国产精品| 综合婷婷亚洲小说| 一区二区三区国产精品| 亚洲成人精品一区二区| 日韩精品三区四区| 国产米奇在线777精品观看| 国产伦精一区二区三区| 成人精品鲁一区一区二区| 91农村精品一区二区在线| 在线观看网站黄不卡| 欧美一级片在线| 国产午夜精品久久| 亚洲美腿欧美偷拍| 日韩精品电影在线| 国产黄色成人av| 在线免费观看日本一区| 91精品国产综合久久香蕉麻豆| 精品国产一区二区精华| 国产精品久久久久久久久免费桃花| 亚洲欧美自拍偷拍色图| 午夜欧美视频在线观看| 久久99久久99精品免视看婷婷| 国产福利一区二区三区视频 | 国产精品18久久久| 一本色道久久综合亚洲aⅴ蜜桃| 欧美午夜精品电影| 日韩网站在线看片你懂的| 国产精品久久777777| 亚洲成人av福利| 国产成人精品一区二区三区网站观看| 99久久久精品免费观看国产蜜| 91精品久久久久久久久99蜜臂| 久久精品亚洲精品国产欧美 | 亚洲1区2区3区4区| 成人国产精品视频| 精品国产伦一区二区三区免费| 亚洲人xxxx| 另类欧美日韩国产在线|