?? simulatesnr.m
字號:
function [snr,amp] = simulateSNR(ntf,OSR,amp,f0,nlev,f,k)%[snr,amp] = simulateSNR(ntf,OSR,amp,f0=0,nlev=2,f=1/(4*OSR),k=13)%Determine the SNR for a delta-sigma modulator by using simulations.%The modulator is described by a noise transfer function (ntf)%and the number of quantizer levels (nlev).%Alternatively, ntf may be an ABCD matrix or %ntf can be the name of a function which takes a single argument%representing the input signal.%The band of interest is defined by the oversampling ratio (OSR)%and the center frequency (f0).%The input signal is characterized by the amp vector and the f variable.%amp defaults to [-120 -110...-20 -15 -10 -9 -8 ... 0]dB, where 0 dB means%a full-scale (peak value = nlev-1) sine wave.%f is the input frequency, normalized such that 1 -> fs;%f is rounded to an FFT bin.%%Using sine waves located in FFT bins, the SNR is calculated as the ratio%of the sine wave power to the power in all in-band bins other than those%associated with the input tone. Due to spectral smearing, the input tone%is not allowed to lie in bins 0 or 1. The length of the FFT is 2^k.%% Future versions may accommodate STFs.% Handle the input argumentsif nargin<1 error('Insufficient arguments');endparameters = {'ntf';'OSR';'amp';'f0';'nlev';'f';'k'};defaults = {NaN 64 NaN 0 2 NaN 13};for arg_i=1:length(defaults) parameter = char(parameters(arg_i)); if arg_i>nargin | ( eval(['isnumeric(' parameter ') ']) & ... eval(['any(isnan(' parameter ')) | isempty(' parameter ') ']) ) eval([parameter '=defaults{arg_i};']) endendif isnan(amp) amp = [-120:10:-20 -15 -10:0];endif f0==0 osr_mult=2;else osr_mult=4;endif isnan(f) f = f0 + 1/(2*OSR*osr_mult);endif abs(f-f0) > 1/(OSR*osr_mult) fprintf(1,'Warning: the input tone is out-of-band.\n');endN = 2^k;if N < 8*2*OSR % Require at least 8 bins to be "in-band" fprintf(1,'Warning: Increasing k to accommodate a large oversampling ratio.\n'); k = ceil(log2(8*2*OSR)) N = 2^k;endF = round(f*N);if F<=1 fprintf(1,'Warning: Increasing k to accommodate a low input frequency.\n'); % Want f*N >= 1 k = ceil(log2(1/f)) N = 2^k; F = 2;endNtransient = 100;tone = (nlev-1) * sin(2*pi*F/N*[0:(N+Ntransient-1)]);window = .5*(1 - cos(2*pi*(0:N-1)/N) ); %Hann windowif f0==0 % Exclude DC and its adjacent bin inBandBins = [3:round(N/(2*OSR))]; F = F-2;else f1 = max(round(N*(f0-1/(4*OSR))),1); inBandBins = [f1:round(N*(f0+1/(4*OSR)))]; F = F-f1+1;endsnr = zeros(size(amp));i=1;for A = 10.^(amp/20); if ~ischar(ntf) v = simulateDSM(A*tone, ntf, nlev); else v = feval(ntf, A*tone); end hwfft = fft(window.*v(1+Ntransient:N+Ntransient)); snr(i) = calculateSNR(hwfft(inBandBins),F); i=i+1;end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -