亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? code.txt

?? face recongnisation code
?? TXT
字號:
Code

Here is some Matlab code that you might find useful. All code is licensed under the GNU Lesser General Public License (LGPL) unless otherwise stated. I also have a Forge project which potentially has more up-to-date code, available here. Please could you contact me if you make any modifications to these files - I'd really like to hear from you!
Pre-process

    * normalise.m - normalise a matrix of examples so that each feature has unit norm.

                  function [normalisedX1, normalisedX2] = normalise(X1, X2)
% Normalise the features (columns) of matrices X1 (and optionally X2) such that 
% each feature of X1 has unit norm. X1 and X2 have examples as their rows. 
%
% Usage: [normalisedX1, normalisedX2] = normalise(X1, X2)
% Inputs/Outputs: 
%   X1 - an (l x n) matrix whose rows are examples
%   X2 (optional) - an (l2 x m) matrix whose rows are examples
%
%   normalisedX1 - normalised X1 
%   normalisedX2 (optional) - normalised X2 
%
% Copyright (C) 2006 Charanpal Dhanjal 

% This library is free software; you can redistribute it and/or
% modify it under the terms of the GNU Lesser General Public
% License as published by the Free Software Foundation; either
% version 2.1 of the License, or (at your option) any later version.
% 
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
% Lesser General Public License for more details.
% 
% You should have received a copy of the GNU Lesser General Public
% License along with this library; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

if (nargin < 1)
    fprintf('%s\n', help('normalise'));
    error('Incorrect number of inputs - see above usage instructions.');
end

numFeatures = size(X1, 2);

%Just make sure the training example features have unit norm 
featureNorms = sqrt(sum(X1.^2));

%Bit of cheat to make sure we don't divide by zero
zeros = featureNorms == 0;
featureNorms = 1./(featureNorms+zeros);

if ~issparse(X1)
    diagNorms = diag(featureNorms); 
else    
    diagNorms = speye(numFeatures); 

    for i=1:numFeatures
        diagNorms(i, i) = featureNorms(i);
    end 
end

normalisedX1 = X1*diagNorms;

if (nargin == 2)
    normalisedX2 = X2*diagNorms; 
end




    * centerData.m - center a matrix of examples so that each feature has zero mean.
   
                 function [cX1, cX2] = centerData(X1, X2) 
% Centers matrices X1 (and optionally X2) by taking the mean of each column 
% (feature) of X1 and subtracting it from the feature values.
%
% Usage: [cX1, cX2] = centerData(X1, X2) 
% Inputs/Outputs: 
%   X1 - an (l x n) matrix whose rows are examples
%   X2 (optional) - an (l2 x m) matrix whose rows are examples
%
%   cX1 - centered X1 
%   cX2 (optional) - centered X2 
%
% Copyright (C) 2006 Charanpal Dhanjal 

% This library is free software; you can redistribute it and/or
% modify it under the terms of the GNU Lesser General Public
% License as published by the Free Software Foundation; either
% version 2.1 of the License, or (at your option) any later version.
% 
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
% Lesser General Public License for more details.
% 
% You should have received a copy of the GNU Lesser General Public
% License along with this library; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301
% USA

if (nargin < 1)
    fprintf('%s\n', help('centerData'));
    error('Incorrect number of inputs - see above usage instructions.');
end

numX1Examples = size(X1, 1);
meanX1 = mean(X1);

if (nargin == 1)
    cX1 = X1 - ones(numX1Examples, 1)*meanX1;
else 
    numX2Examples = size(X2,1);
    cX1 = X1 - ones(numX1Examples, 1)*meanX1;
    cX2 = X2 - ones(numX2Examples, 1)*meanX1;
end



 * normaliseExamples.m - scale each example so that it lies on a hyper-sphere of radius 1.

            function [normalisedX] = normaliseExamples(X)
% Normalise examples so they lie on a sphere of radius 1
%
% Usage: [normalisedX] = normaliseExamples(X)
% Inputs/Outputs: 
%   X - an (l x n) matrix whose rows are examples
%
%   normalisedX - normalised X 

% Copyright (C) 2006 Charanpal Dhanjal 

% This library is free software; you can redistribute it and/or
% modify it under the terms of the GNU Lesser General Public
% License as published by the Free Software Foundation; either
% version 2.1 of the License, or (at your option) any later version.
% 
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
% Lesser General Public License for more details.
% 
% You should have received a copy of the GNU Lesser General Public
% License along with this library; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301
% USA

if (nargin ~= 1)
    fprintf('%s\n', help(sprintf('%s', mfilename)));
    error('Incorrect number of inputs - see above usage instructions.');
end

R =  max(sqrt(sum(X.^2, 2)));

normalisedX = X/R; 


Evaluate

    * precision.m - compute the precision on a set of predicted labels.
    * recall.m - compute the recall of a set of predicted labels.
    * fMeasure.m - compute the F-measure of a set of predicted labels.
    * averagePrecision.m - compute the average precision of a set of predicted labels.
    * truePositiveRate.m - compute the true positive rate of a set of predicted labels.
    * falsePositiveRate.m - compute the false positive rate of a set of predicted labels.
    * balancedErrorRate.m - compute the balanced error rate (BER) of a set of predicted labels.
    * rootMeanSqError.m - compute the root mean squared erorr of a set of predicted labels.

Feature extraction

    * primalGeneralFeatures.m - extract primal general features for a matrix of examples and predicted labels
    * maxVariance.m - find the projection vector of maximal variance for a matrix of examples.
    * maxCovariance.m - find the projection vector which maximises the covariance between a matrix of examples and corresponding labels.
    * dualPCATrain.m - train the Kernel Principal Components Analysis (KPCA) algorithm.
    * dualPCAProject.m - project test examples for the Kernel Principal Components Analysis (KPCA) algorithm.

Miscellaneous

    * data.zip - a data object which is efficient with memory usage. Operations to add and delete matrices to the object as well as permuting and partitioning data.
    * binaryLabels.m - check if a label matrix contains binary values.
    * vprintf.m - print strings to screen with optional relevancy parameter.
    * getSpaceNames.m - utility function to get name of X and Y spaces.
    * maxN.m - return indices for the maximum n elements of a matrix.







?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产69精品一区二区亚洲孕妇| 亚洲视频香蕉人妖| 蜜臀av一区二区| 日韩一区二区三区四区| 蜜臀av性久久久久蜜臀aⅴ流畅 | 亚洲男人电影天堂| 91一区二区三区在线观看| 亚洲手机成人高清视频| 91丨porny丨蝌蚪视频| 亚洲欧美日韩久久| 欧美精品少妇一区二区三区| 麻豆国产欧美日韩综合精品二区| 久久久五月婷婷| 99国内精品久久| 性做久久久久久| 日韩女优毛片在线| 成人av在线一区二区三区| 亚洲美女视频一区| 欧美一级二级三级蜜桃| 国产精品亚洲第一| 亚洲黄色录像片| 精品盗摄一区二区三区| 99热国产精品| 日韩精品一级二级| 欧美国产日韩一二三区| 在线精品视频免费播放| 国产在线视频一区二区三区| 日韩理论片在线| 欧美一区欧美二区| 91在线观看视频| 日韩激情视频网站| 国产精品免费免费| 欧美一区三区四区| 91美女精品福利| 九九久久精品视频| 亚洲自拍偷拍图区| 国产午夜精品在线观看| 欧美高清性hdvideosex| 成人开心网精品视频| 日本最新不卡在线| 亚洲欧美视频一区| 2020国产成人综合网| 在线精品视频免费播放| 丁香婷婷综合五月| 日本 国产 欧美色综合| 亚洲精品日产精品乱码不卡| 久久久不卡网国产精品一区| 这里是久久伊人| 在线精品视频小说1| 成人av网址在线观看| 精品一区二区免费视频| 亚洲成人激情综合网| 亚洲视频一区在线| 国产蜜臀97一区二区三区 | 欧美一区二区三区影视| 色综合天天综合在线视频| 国产一区二区在线视频| 乱一区二区av| 奇米精品一区二区三区在线观看一| 亚洲女同一区二区| 国产精品美女久久久久久2018| 欧美大尺度电影在线| 色婷婷久久久亚洲一区二区三区 | 亚洲综合一区二区| 中文字幕第一区综合| 精品免费一区二区三区| 欧美一区二区三区男人的天堂| 91黄色免费看| 91视频xxxx| 成人动漫中文字幕| 不卡的av中国片| 成人午夜av在线| 99久久婷婷国产综合精品电影| 国产一区二区三区四| 国产精品性做久久久久久| 韩国av一区二区| 国产成人在线影院| 成人性生交大片免费看视频在线| 国产精品资源在线| 成人免费毛片a| 成人黄色免费短视频| 91丨九色丨尤物| 日本韩国精品在线| 精品视频一区二区三区免费| 欧美群妇大交群的观看方式| 在线播放视频一区| 日韩欧美中文字幕公布| 亚洲精品在线观看视频| 久久精品免视看| 综合分类小说区另类春色亚洲小说欧美| 国产精品成人在线观看| 亚洲欧美一区二区不卡| 亚洲国产一区视频| 天天色 色综合| 久久aⅴ国产欧美74aaa| 国产伦精品一区二区三区视频青涩| 懂色av噜噜一区二区三区av| 色综合天天狠狠| 欧美一区二区不卡视频| 久久久久久久久久久电影| 国产精品女上位| 亚洲成人av中文| 国产一区在线不卡| 色中色一区二区| 欧美一区午夜精品| 日本一区二区三区视频视频| 亚洲美女视频一区| 另类调教123区 | 久久久久久黄色| 国产精品二三区| 日日欢夜夜爽一区| 国产成人亚洲精品青草天美| 91国偷自产一区二区三区成为亚洲经典 | 久久一区二区视频| 一区二区三区在线观看网站| 久久精品国产999大香线蕉| 成人高清视频在线| 91精品国产综合久久小美女| 国产精品久久久久久久浪潮网站| 亚洲成人激情自拍| 国产999精品久久久久久| 欧美午夜电影一区| 国产精品免费久久| 美女在线视频一区| 色婷婷综合久久久中文一区二区 | www.亚洲人| 制服丝袜中文字幕一区| 国产精品成人一区二区三区夜夜夜| 国产一区二区精品久久91| 色网站国产精品| 国产亚洲精品aa| 美国三级日本三级久久99| 色婷婷综合视频在线观看| 久久久久青草大香线综合精品| 亚洲国产精品久久不卡毛片| 成人一区在线观看| 久久亚洲一级片| 午夜激情久久久| 色琪琪一区二区三区亚洲区| 久久久久高清精品| 蜜桃久久久久久久| 欧美性猛片aaaaaaa做受| 最新高清无码专区| 国产91在线观看| 久久久蜜桃精品| 久久成人久久鬼色| 日韩午夜三级在线| 午夜国产不卡在线观看视频| 91视频www| 国产精品不卡一区| 国产成人亚洲综合a∨婷婷| 精品国产一二三区| 美腿丝袜亚洲色图| 欧美一级日韩一级| 免费不卡在线视频| 91精品国产欧美一区二区| 亚洲1区2区3区4区| 欧美视频你懂的| 亚洲无线码一区二区三区| 色婷婷av一区二区三区大白胸| 国产精品久久久久久亚洲伦| 国产成人亚洲综合a∨婷婷| 久久久不卡网国产精品一区| 国模冰冰炮一区二区| 欧美一区二区三区小说| 日韩福利电影在线| 91麻豆精品国产91久久久久久久久 | 国产一区二区三区四| 久久久久亚洲综合| 成人免费观看av| 国产女人aaa级久久久级| 国产+成+人+亚洲欧洲自线| 日本一区二区不卡视频| 成人97人人超碰人人99| 国产精品麻豆久久久| 91丝袜呻吟高潮美腿白嫩在线观看| 一区在线观看免费| 日本高清无吗v一区| 亚洲成人精品在线观看| 欧美精品久久久久久久久老牛影院 | 日韩欧美一区二区不卡| 国产乱人伦精品一区二区在线观看 | 久久精品夜夜夜夜久久| 成人精品在线视频观看| 亚洲免费在线视频一区 二区| 日本精品一区二区三区高清| 亚洲观看高清完整版在线观看| 9191国产精品| 国产成人在线视频免费播放| 亚洲人123区| 91精品国产综合久久精品图片| 国产一区二区三区免费观看| 成人免费在线播放视频| 欧美视频在线一区| 韩国成人福利片在线播放| 国产精品美女久久久久av爽李琼| 欧美性猛片aaaaaaa做受| 美女网站色91| 成人欧美一区二区三区小说 | 97se狠狠狠综合亚洲狠狠|