亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? 遺傳算法.txt

?? AI智能算法 是清華大學計算機王教授 指導開發
?? TXT
字號:
這是一個非常簡單的遺傳算法源代碼,是由Denis Cormier (North Carolina State University)開發的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代碼保證盡可能少,實際上也不必查錯。對一特定的應用修正此代碼,用戶只需改變常數的定義并且定義“評價函數”即可。注意代碼 的設計是求最大值,其中的目標函數只能取正值;且函數值和個體的適應值之間沒有區別。該系統使用比率選擇、精華模型、單點雜交和均勻變異。如果用 Gaussian變異替換均勻變異,可能得到更好的效果。代碼沒有任何圖形,甚至也沒有屏幕輸出,主要是保證在平臺之間的高可移植性。讀者可以從ftp.uncc.edu, 目錄 coe/evol中的文件prog.c中獲得。要求輸入的文件應該命名為‘gadata.txt’;系統產生的輸出文件為‘galog.txt’。輸入的 文件由幾行組成:數目對應于變量數。且每一行提供次序——對應于變量的上下界。如第一行為第一個變量提供上下界,第二行為第二個變量提供上下界,等等。 

/**************************************************************************/
/* This is a simple genetic algorithm implementation where the */
/* evaluation function takes positive values only and the */
/* fitness of an individual is the same as the value of the */
/* objective function */
/**************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Change any of these parameters to match your needs */

#define POPSIZE 50 /* population size */
#define MAXGENS 1000 /* max. number of generations */
#define NVARS 3 /* no. of problem variables */
#define PXOVER 0.8 /* probability of crossover */
#define PMUTATION 0.15 /* probability of mutation */
#define TRUE 1
#define FALSE 0

int generation; /* current generation no. */
int cur_best; /* best individual */
FILE *galog; /* an output file */

struct genotype /* genotype (GT), a member of the population */
{
double gene[NVARS]; /* a string of variables */
double fitness; /* GT's fitness */
double upper[NVARS]; /* GT's variables upper bound */
double lower[NVARS]; /* GT's variables lower bound */
double rfitness; /* relative fitness */
double cfitness; /* cumulative fitness */
};

struct genotype population[POPSIZE+1]; /* population */
struct genotype newpopulation[POPSIZE+1]; /* new population; */
/* replaces the */
/* old generation */

/* Declaration of procedures used by this genetic algorithm */

void initialize(void);
double randval(double, double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void select(void);
void crossover(void);
void Xover(int,int);
void swap(double *, double *);
void mutate(void);
void report(void);

/***************************************************************/
/* Initialization function: Initializes the values of genes */
/* within the variables bounds. It also initializes (to zero) */
/* all fitness values for each member of the population. It */
/* reads upper and lower bounds of each variable from the */
/* input file `gadata.txt'. It randomly generates values */
/* between these bounds for each gene of each genotype in the */
/* population. The format of the input file `gadata.txt' is */
/* var1_lower_bound var1_upper bound */
/* var2_lower_bound var2_upper bound ... */
/***************************************************************/

void initialize(void)
{
FILE *infile;
int i, j;
double lbound, ubound;

if ((infile = fopen("gadata.txt","r"))==NULL)
{
fprintf(galog,"\nCannot open input file!\n");
exit(1);
}

/* initialize variables within the bounds */

for (i = 0; i < NVARS; i++)
{
fscanf(infile, "%lf",&lbound);
fscanf(infile, "%lf",&ubound);

for (j = 0; j < POPSIZE; j++)
{
population[j].fitness = 0;
population[j].rfitness = 0;
population[j].cfitness = 0;
population[j].lower[i] = lbound;
population[j].upper[i]= ubound;
population[j].gene[i] = randval(population[j].lower[i],
population[j].upper[i]);
}
}

fclose(infile);
}

/***********************************************************/
/* Random value generator: Generates a value within bounds */
/***********************************************************/

double randval(double low, double high)
{
double val;
val = ((double)(rand()%1000)/1000.0)*(high - low) + low;
return(val);
}

/*************************************************************/
/* Evaluation function: This takes a user defined function. */
/* Each time this is changed, the code has to be recompiled. */
/* The current function is: x[1]^2-x[1]*x[2]+x[3] */
/*************************************************************/

void evaluate(void)
{
int mem;
int i;
double x[NVARS+1];

for (mem = 0; mem < POPSIZE; mem++)
{
for (i = 0; i < NVARS; i++)
x[i+1] = population[mem].gene[i];

population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];
}
}

/***************************************************************/
/* Keep_the_best function: This function keeps track of the */
/* best member of the population. Note that the last entry in */
/* the array Population holds a copy of the best individual */
/***************************************************************/

void keep_the_best()
{
int mem;
int i;
cur_best = 0; /* stores the index of the best individual */

for (mem = 0; mem < POPSIZE; mem++)
{
if (population[mem].fitness > population[POPSIZE].fitness)
{
cur_best = mem;
population[POPSIZE].fitness = population[mem].fitness;
}
}
/* once the best member in the population is found, copy the genes */
for (i = 0; i < NVARS; i++)
population[POPSIZE].gene[i] = population[cur_best].gene[i];
}

/****************************************************************/
/* Elitist function: The best member of the previous generation */
/* is stored as the last in the array. If the best member of */
/* the current generation is worse then the best member of the */
/* previous generation, the latter one would replace the worst */
/* member of the current population */
/****************************************************************/

void elitist()
{
int i;
double best, worst; /* best and worst fitness values */
int best_mem, worst_mem; /* indexes of the best and worst member */

best = population[0].fitness;
worst = population[0].fitness;
for (i = 0; i < POPSIZE - 1; ++i)
{
if(population[i].fitness > population[i+1].fitness)
{ 
if (population[i].fitness >= best)
{
best = population[i].fitness;
best_mem = i;
}
if (population[i+1].fitness <= worst)
{
worst = population[i+1].fitness;
worst_mem = i + 1;
}
}
else
{
if (population[i].fitness <= worst)
{
worst = population[i].fitness;
worst_mem = i;
}
if (population[i+1].fitness >= best)
{
best = population[i+1].fitness;
best_mem = i + 1;
}
}
}
/* if best individual from the new population is better than */
/* the best individual from the previous population, then */
/* copy the best from the new population; else replace the */
/* worst individual from the current population with the */
/* best one from the previous generation */

if (best >= population[POPSIZE].fitness)
{
for (i = 0; i < NVARS; i++)
population[POPSIZE].gene[i] = population[best_mem].gene[i];
population[POPSIZE].fitness = population[best_mem].fitness;
}
else
{
for (i = 0; i < NVARS; i++)
population[worst_mem].gene[i] = population[POPSIZE].gene[i];
population[worst_mem].fitness = population[POPSIZE].fitness;
} 
}
/**************************************************************/
/* Selection function: Standard proportional selection for */
/* maximization problems incorporating elitist model - makes */
/* sure that the best member survives */
/**************************************************************/

void select(void)
{
int mem, i, j, k;
double sum = 0;
double p;

/* find total fitness of the population */
for (mem = 0; mem < POPSIZE; mem++)
{
sum += population[mem].fitness;
}

/* calculate relative fitness */
for (mem = 0; mem < POPSIZE; mem++)
{
population[mem].rfitness = population[mem].fitness/sum;
}
population[0].cfitness = population[0].rfitness;

/* calculate cumulative fitness */
for (mem = 1; mem < POPSIZE; mem++)
{
population[mem].cfitness = population[mem-1].cfitness + 
population[mem].rfitness;
}

/* finally select survivors using cumulative fitness. */

for (i = 0; i < POPSIZE; i++)
{ 
p = rand()%1000/1000.0;
if (p < population[0].cfitness)
newpopulation[i] = population[0]; 
else
{
for (j = 0; j < POPSIZE;j++) 
if (p >= population[j].cfitness && 
p<population[j+1].cfitness)
newpopulation[i] = population[j+1];
}
}
/* once a new population is created, copy it back */

for (i = 0; i < POPSIZE; i++)
population[i] = newpopulation[i]; 
}

/***************************************************************/
/* Crossover selection: selects two parents that take part in */
/* the crossover. Implements a single point crossover */
/***************************************************************/

void crossover(void)
{
int i, mem, one;
int first = 0; /* count of the number of members chosen */
double x;

for (mem = 0; mem < POPSIZE; ++mem)
{
x = rand()%1000/1000.0;
if (x < PXOVER)
{
++first;
if (first % 2 == 0)
Xover(one, mem);
else
one = mem;
}
}
}
/**************************************************************/
/* Crossover: performs crossover of the two selected parents. */
/**************************************************************/

void Xover(int one, int two)
{
int i;
int point; /* crossover point */

/* select crossover point */
if(NVARS > 1)
{
if(NVARS == 2)
point = 1;
else
point = (rand() % (NVARS - 1)) + 1;

for (i = 0; i < point; i++)
swap(&population[one].gene[i], &population[two].gene[i]);

}
}

/*************************************************************/
/* Swap: A swap procedure that helps in swapping 2 variables */
/*************************************************************/

void swap(double *x, double *y)
{
double temp;

temp = *x;
*x = *y;
*y = temp;

}

/**************************************************************/
/* Mutation: Random uniform mutation. A variable selected for */
/* mutation is replaced by a random value between lower and */
/* upper bounds of this variable */
/**************************************************************/

void mutate(void)
{
int i, j;
double lbound, hbound;
double x;

for (i = 0; i < POPSIZE; i++)
for (j = 0; j < NVARS; j++)
{
x = rand()%1000/1000.0;
if (x < PMUTATION)
{
/* find the bounds on the variable to be mutated */
lbound = population[i].lower[j];
hbound = population[i].upper[j]; 
population[i].gene[j] = randval(lbound, hbound);
}
}
}

/***************************************************************/
/* Report function: Reports progress of the simulation. Data */
/* dumped into the output file are separated by commas */
/***************************************************************/

void report(void)
{
int i;
double best_val; /* best population fitness */
double avg; /* avg population fitness */
double stddev; /* std. deviation of population fitness */
double sum_square; /* sum of square for std. calc */
double square_sum; /* square of sum for std. calc */
double sum; /* total population fitness */

sum = 0.0;
sum_square = 0.0;

for (i = 0; i < POPSIZE; i++)
{
sum += population[i].fitness;
sum_square += population[i].fitness * population[i].fitness;
}

avg = sum/(double)POPSIZE;
square_sum = avg * avg * POPSIZE;
stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));
best_val = population[POPSIZE].fitness;

fprintf(galog, "\n%5d, %6.3f, %6.3f, %6.3f \n\n", generation, 
best_val, avg, stddev);
}

/**************************************************************/
/* Main function: Each generation involves selecting the best */
/* members, performing crossover & mutation and then */
/* evaluating the resulting population, until the terminating */
/* condition is satisfied */
/**************************************************************/

void main(void)
{
int i;

if ((galog = fopen("galog.txt","w"))==NULL)
{
exit(1);
}
generation = 0;

fprintf(galog, "\n generation best average standard \n");
fprintf(galog, " number value fitness deviation \n");

initialize();
evaluate();
keep_the_best();
while(generation<MAXGENS)
{
generation++;
select();
crossover();
mutate();
report();
evaluate();
elitist();
}
fprintf(galog,"\n\n Simulation completed\n");
fprintf(galog,"\n Best member: \n");

for (i = 0; i < NVARS; i++)
{
fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);
}
fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);
fclose(galog);
printf("Success\n");
}
/***************************************************************/

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99久久免费精品| 不卡区在线中文字幕| 亚洲同性同志一二三专区| 精品国产91乱码一区二区三区 | 久久99热国产| 国产一区二区调教| 欧美自拍丝袜亚洲| 日韩欧美中文字幕精品| 欧美a一区二区| 欧美精品久久99| 九九视频精品免费| 国产不卡视频一区| 久久久亚洲精华液精华液精华液 | 欧美自拍偷拍一区| 亚洲一区二区三区在线| 欧美在线观看禁18| 日韩亚洲欧美一区二区三区| 1000部国产精品成人观看| 国产福利精品一区| 亚洲视频一区二区在线| 91最新地址在线播放| 亚洲天堂2016| 日本乱码高清不卡字幕| 亚洲bt欧美bt精品777| 日韩欧美一级精品久久| 国内国产精品久久| 亚洲精品国产a| 亚洲成人动漫一区| 精品国产网站在线观看| 国产精品77777竹菊影视小说| 精品国产一区久久| 91蜜桃传媒精品久久久一区二区| 欧美日韩在线播放| 久久成人综合网| 亚洲欧洲日韩av| 欧美一区二区三区四区高清| 粗大黑人巨茎大战欧美成人| 欧美一级艳片视频免费观看| 亚洲欧美日韩在线播放| 欧美一二三区在线观看| 豆国产96在线|亚洲| 午夜一区二区三区视频| 欧美精品日日鲁夜夜添| 国产精品久久久久久户外露出 | 三级精品在线观看| 色8久久精品久久久久久蜜| 香蕉影视欧美成人| 日韩欧美成人一区二区| 国产精品美女久久久久aⅴ| 欧美日韩小视频| 成人黄页在线观看| 久久国产婷婷国产香蕉| 欧美激情自拍偷拍| 日韩欧美在线网站| 欧美在线不卡一区| 成人国产精品免费观看动漫| 精久久久久久久久久久| 亚洲成人av福利| 国产精品久久久久久久久动漫| 精品国产伦一区二区三区观看体验| av不卡在线播放| 亚洲午夜免费视频| 一区二区三区中文字幕在线观看| 欧美视频精品在线观看| av激情综合网| 成人国产精品免费观看动漫 | 福利一区二区在线观看| 国产精品888| 国产91精品一区二区麻豆亚洲| 国产精一品亚洲二区在线视频| 日韩av高清在线观看| 婷婷激情综合网| 日韩高清中文字幕一区| 久久精品国产网站| 国产精品伊人色| 欧美色窝79yyyycom| 欧美日韩三级一区| 亚洲精品在线电影| 中文字幕第一页久久| 国产一区二区不卡在线| 日韩成人免费电影| 大陆成人av片| 4438x成人网最大色成网站| 黄色成人免费在线| 一区二区三区中文在线| 日韩激情视频在线观看| 国产精品对白交换视频| 99精品视频在线观看免费| 欧美一区二区三区免费视频| 一区二区国产视频| 欧美激情中文字幕一区二区| 亚洲图片激情小说| 午夜精品久久久久久久蜜桃app| 日韩美一区二区三区| 亚洲尤物视频在线| 日韩在线观看一区二区| 欧美视频日韩视频| 777a∨成人精品桃花网| 欧美一区二区三区视频免费播放| 日韩欧美国产小视频| 9i在线看片成人免费| 性做久久久久久| 午夜私人影院久久久久| 亚洲国产成人精品视频| 色婷婷久久综合| 一区二区三区四区不卡视频| 国产成人精品一区二区三区四区 | 国产精品第四页| 亚洲欧洲日韩在线| 精品视频999| 亚洲国产精品久久久男人的天堂| 老司机精品视频导航| 久久久三级国产网站| 亚洲精品在线免费播放| 欧美高清精品3d| 一本大道久久a久久精二百 | 91黄色免费网站| 欧美日韩视频在线观看一区二区三区 | 亚洲人精品一区| 久久综合久久综合久久| 一区二区三区小说| 国产精品看片你懂得| 午夜久久久久久久久久一区二区| 国产在线国偷精品免费看| 亚洲天堂2014| www成人在线观看| 欧美一级片免费看| 粉嫩在线一区二区三区视频| 色国产精品一区在线观看| 日本最新不卡在线| 免费人成黄页网站在线一区二区| 不卡欧美aaaaa| 免费在线观看视频一区| 欧美人与禽zozo性伦| 日本成人在线一区| 成人性视频免费网站| 成人ar影院免费观看视频| 中文字幕成人av| 欧美老女人第四色| 亚洲欧美另类小说视频| 精品国产一区久久| 日韩一区二区三区高清免费看看 | 久久婷婷一区二区三区| 亚洲精选一二三| 这里只有精品免费| 99精品黄色片免费大全| 色综合天天性综合| 亚洲视频 欧洲视频| 国产高清一区日本| 国产成人aaa| 欧美吻胸吃奶大尺度电影| 亚洲精品日韩专区silk| 欧美性猛交xxxx乱大交退制版| 高清beeg欧美| 国产福利91精品| 制服丝袜日韩国产| 精品成人a区在线观看| 亚洲午夜成aⅴ人片| 成人免费看黄yyy456| 久久精品免费观看| 国产精品综合一区二区| 一本大道久久a久久综合| 亚洲精品日韩综合观看成人91| 婷婷开心久久网| 91精品久久久久久久久99蜜臂| 久久嫩草精品久久久久| 九九视频精品免费| 欧美一区二区三区男人的天堂| 欧美日韩一级二级三级| 久久精品国产**网站演员| 日韩欧美一二三四区| 欧美日韩aaa| 久久亚洲欧美国产精品乐播| 91美女在线看| 久久精品国产亚洲5555| 欧美男生操女生| 秋霞午夜鲁丝一区二区老狼| 欧美亚洲一区二区在线| 久久精品在这里| 亚洲欧美在线观看| 91精品国产乱码| 国产精品一区三区| 日韩激情一区二区| 亚洲风情在线资源站| 亚洲影院理伦片| 九色porny丨国产精品| 国产精品一区二区果冻传媒| 成人av网站在线观看| 国产精品成人一区二区艾草| 亚洲色图欧美激情| 亚洲一级二级三级在线免费观看| 538在线一区二区精品国产| 欧美精品第一页| 久久久三级国产网站| 一区二区三区美女视频| 韩国女主播一区二区三区| 欧美亚洲尤物久久| 久久久亚洲精华液精华液精华液| 亚洲精品久久久久久国产精华液| 亚洲mv在线观看|