亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? matrix.java

?? Java 編寫的多種數(shù)據(jù)挖掘算法 包括聚類、分類、預(yù)處理等
?? JAVA
?? 第 1 頁(yè) / 共 3 頁(yè)
字號(hào):
      for (int i = 0; i < r.length; i++) {        for (int j = j0; j <= j1; j++) {          A[r[i]][j] = X.get(i,j-j0);        }      }    } catch(ArrayIndexOutOfBoundsException e) {      throw new ArrayIndexOutOfBoundsException("Submatrix indices");    }  }  /**    * Set a submatrix.   * @param i0   Initial row index   * @param i1   Final row index   * @param c    Array of column indices.   * @param X    A(i0:i1,c(:))   * @exception  ArrayIndexOutOfBoundsException Submatrix indices   */  public void setMatrix(int i0, int i1, int[] c, Matrix X) {    try {      for (int i = i0; i <= i1; i++) {        for (int j = 0; j < c.length; j++) {          A[i][c[j]] = X.get(i-i0,j);        }      }    } catch(ArrayIndexOutOfBoundsException e) {      throw new ArrayIndexOutOfBoundsException("Submatrix indices");    }  }    /**   * Returns true if the matrix is symmetric.   *   * @return boolean true if matrix is symmetric.   * @author FracPete, taken from old weka.core.Matrix class   */  public boolean isSymmetric() {    int nr = A.length, nc = A[0].length;    if (nr != nc)      return false;    for (int i = 0; i < nc; i++) {      for (int j = 0; j < i; j++) {        if (A[i][j] != A[j][i])          return false;      }    }    return true;  }  /**   * returns whether the matrix is a square matrix or not.   *   * @return true if the matrix is a square matrix   * @author FracPete   */  public boolean isSquare() {    return (getRowDimension() == getColumnDimension());  }  /**    * Matrix transpose.   * @return    A'   */  public Matrix transpose() {    Matrix X = new Matrix(n,m);    double[][] C = X.getArray();    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        C[j][i] = A[i][j];      }    }    return X;  }  /**    * One norm   * @return    maximum column sum.   */  public double norm1() {    double f = 0;    for (int j = 0; j < n; j++) {      double s = 0;      for (int i = 0; i < m; i++) {        s += Math.abs(A[i][j]);      }      f = Math.max(f,s);    }    return f;  }  /**    * Two norm   * @return    maximum singular value.   */  public double norm2() {    return (new SingularValueDecomposition(this).norm2());  }  /**    * Infinity norm   * @return    maximum row sum.   */  public double normInf() {    double f = 0;    for (int i = 0; i < m; i++) {      double s = 0;      for (int j = 0; j < n; j++) {        s += Math.abs(A[i][j]);      }      f = Math.max(f,s);    }    return f;  }  /**    * Frobenius norm   * @return    sqrt of sum of squares of all elements.   */  public double normF() {    double f = 0;    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        f = Maths.hypot(f,A[i][j]);      }    }    return f;  }  /**     * Unary minus   * @return    -A   */  public Matrix uminus() {    Matrix X = new Matrix(m,n);    double[][] C = X.getArray();    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        C[i][j] = -A[i][j];      }    }    return X;  }  /**    * C = A + B   * @param B    another matrix   * @return     A + B   */  public Matrix plus(Matrix B) {    checkMatrixDimensions(B);    Matrix X = new Matrix(m,n);    double[][] C = X.getArray();    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        C[i][j] = A[i][j] + B.A[i][j];      }    }    return X;  }  /**    * A = A + B   * @param B    another matrix   * @return     A + B   */  public Matrix plusEquals(Matrix B) {    checkMatrixDimensions(B);    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        A[i][j] = A[i][j] + B.A[i][j];      }    }    return this;  }  /**    * C = A - B   * @param B    another matrix   * @return     A - B   */  public Matrix minus(Matrix B) {    checkMatrixDimensions(B);    Matrix X = new Matrix(m,n);    double[][] C = X.getArray();    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        C[i][j] = A[i][j] - B.A[i][j];      }    }    return X;  }  /**    * A = A - B   * @param B    another matrix   * @return     A - B   */  public Matrix minusEquals(Matrix B) {    checkMatrixDimensions(B);    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        A[i][j] = A[i][j] - B.A[i][j];      }    }    return this;  }  /**    * Element-by-element multiplication, C = A.*B   * @param B    another matrix   * @return     A.*B   */  public Matrix arrayTimes(Matrix B) {    checkMatrixDimensions(B);    Matrix X = new Matrix(m,n);    double[][] C = X.getArray();    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        C[i][j] = A[i][j] * B.A[i][j];      }    }    return X;  }  /**    * Element-by-element multiplication in place, A = A.*B   * @param B    another matrix   * @return     A.*B   */  public Matrix arrayTimesEquals(Matrix B) {    checkMatrixDimensions(B);    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        A[i][j] = A[i][j] * B.A[i][j];      }    }    return this;  }  /**    * Element-by-element right division, C = A./B   * @param B    another matrix   * @return     A./B   */  public Matrix arrayRightDivide(Matrix B) {    checkMatrixDimensions(B);    Matrix X = new Matrix(m,n);    double[][] C = X.getArray();    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        C[i][j] = A[i][j] / B.A[i][j];      }    }    return X;  }  /**    * Element-by-element right division in place, A = A./B   * @param B    another matrix   * @return     A./B   */  public Matrix arrayRightDivideEquals(Matrix B) {    checkMatrixDimensions(B);    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        A[i][j] = A[i][j] / B.A[i][j];      }    }    return this;  }  /**    * Element-by-element left division, C = A.\B   * @param B    another matrix   * @return     A.\B   */  public Matrix arrayLeftDivide(Matrix B) {    checkMatrixDimensions(B);    Matrix X = new Matrix(m,n);    double[][] C = X.getArray();    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        C[i][j] = B.A[i][j] / A[i][j];      }    }    return X;  }  /**    * Element-by-element left division in place, A = A.\B   * @param B    another matrix   * @return     A.\B   */  public Matrix arrayLeftDivideEquals(Matrix B) {    checkMatrixDimensions(B);    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        A[i][j] = B.A[i][j] / A[i][j];      }    }    return this;  }  /**    * Multiply a matrix by a scalar, C = s*A   * @param s    scalar   * @return     s*A   */  public Matrix times(double s) {    Matrix X = new Matrix(m,n);    double[][] C = X.getArray();    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        C[i][j] = s*A[i][j];      }    }    return X;  }  /**    * Multiply a matrix by a scalar in place, A = s*A   * @param s    scalar   * @return     replace A by s*A   */  public Matrix timesEquals(double s) {    for (int i = 0; i < m; i++) {      for (int j = 0; j < n; j++) {        A[i][j] = s*A[i][j];      }    }    return this;  }  /**    * Linear algebraic matrix multiplication, A * B   * @param B    another matrix   * @return     Matrix product, A * B   * @exception  IllegalArgumentException Matrix inner dimensions must agree.   */  public Matrix times(Matrix B) {    if (B.m != n) {      throw new IllegalArgumentException("Matrix inner dimensions must agree.");    }    Matrix X = new Matrix(m,B.n);    double[][] C = X.getArray();    double[] Bcolj = new double[n];    for (int j = 0; j < B.n; j++) {      for (int k = 0; k < n; k++) {        Bcolj[k] = B.A[k][j];      }      for (int i = 0; i < m; i++) {        double[] Arowi = A[i];        double s = 0;        for (int k = 0; k < n; k++) {          s += Arowi[k]*Bcolj[k];        }        C[i][j] = s;      }    }    return X;  }  /**    * LU Decomposition   * @return     LUDecomposition   * @see LUDecomposition   */  public LUDecomposition lu() {    return new LUDecomposition(this);  }  /**    * QR Decomposition   * @return     QRDecomposition   * @see QRDecomposition   */  public QRDecomposition qr() {    return new QRDecomposition(this);  }  /**    * Cholesky Decomposition   * @return     CholeskyDecomposition   * @see CholeskyDecomposition   */  public CholeskyDecomposition chol() {    return new CholeskyDecomposition(this);  }  /**    * Singular Value Decomposition   * @return     SingularValueDecomposition   * @see SingularValueDecomposition   */  public SingularValueDecomposition svd() {    return new SingularValueDecomposition(this);  }  /**    * Eigenvalue Decomposition   * @return     EigenvalueDecomposition   * @see EigenvalueDecomposition   */  public EigenvalueDecomposition eig() {    return new EigenvalueDecomposition(this);  }  /**    * Solve A*X = B   * @param B    right hand side   * @return     solution if A is square, least squares solution otherwise   */  public Matrix solve(Matrix B) {    return (m == n ? (new LUDecomposition(this)).solve(B) :        (new QRDecomposition(this)).solve(B));  }  /**    * Solve X*A = B, which is also A'*X' = B'   * @param B    right hand side   * @return     solution if A is square, least squares solution otherwise.   */  public Matrix solveTranspose(Matrix B) {    return transpose().solve(B.transpose());  }  /**    * Matrix inverse or pseudoinverse   * @return     inverse(A) if A is square, pseudoinverse otherwise.   */  public Matrix inverse() {    return solve(identity(m,m));  }  /**   * returns the square root of the matrix, i.e., X from the equation   * X*X = A.<br/>   * Steps in the Calculation (see <a href="http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sqrtm.html" target="blank"><code>sqrtm</code></a> in Matlab):<br/>   * <ol>   *   <li>perform eigenvalue decomposition<br/>[V,D]=eig(A)</li>   *   <li>take the square root of all elements in D (only the ones with    *       positive sign are considered for further computation)<br/>   *       S=sqrt(D)</li>   *   <li>calculate the root<br/>   *       X=V*S/V, which can be also written as X=(V'\(V*S)')'</li>   * </ol>   * <p/>   * <b>Note:</b> since this method uses other high-level methods, it generates   * several instances of matrices. This can be problematic with large   * matrices.   * <p/>   * Examples:   * <ol>   *   <li>   *   <pre>   *  X =   *   5   -4    1    0    0   *  -4    6   -4    1    0   *   1   -4    6   -4    1   *   0    1   -4    6   -4   *   0    0    1   -4    5   *    *  sqrt(X) =   *   2   -1   -0   -0   -0    *  -1    2   -1    0   -0    *   0   -1    2   -1    0    *  -0    0   -1    2   -1    *  -0   -0   -0   -1    2    *     *  Matrix m = new Matrix(new double[][]{{5,-4,1,0,0},{-4,6,-4,1,0},{1,-4,6,-4,1},{0,1,-4,6,-4},{0,0,1,-4,5}});   *   </pre>   *   </li>   *   <li>   *   <pre>   *  X =   *   7   10   *  15   22   *     *  sqrt(X) =   *  1.5667    1.7408   *  2.6112    4.1779   *    *  Matrix m = new Matrix(new double[][]{{7, 10},{15, 22}});   *   </pre>   *   </li>   * </ol>   *   * @return    sqrt(A)   * @author    FracPete   */  public Matrix sqrt() {    EigenvalueDecomposition   evd;    Matrix                    s;    Matrix                    v;    Matrix                    d;    Matrix                    result;    Matrix                    a;    Matrix                    b;    int                       i;    int                       n;    result = null;        // eigenvalue decomp.    // [V, D] = eig(A) with A = this    evd = this.eig();    v   = evd.getV();    d   = evd.getD();    // S = sqrt of cells of D    s = new Matrix(d.getRowDimension(), d.getColumnDimension());    for (i = 0; i < s.getRowDimension(); i++)

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本韩国欧美一区| 欧美mv日韩mv| 亚洲美女视频在线观看| 国产精品一二一区| 国产精品美女久久久久久久久| 国产一区在线看| 自拍偷拍国产精品| 91在线丨porny丨国产| 国产精品视频线看| 91成人免费在线视频| 亚洲国产一区在线观看| 欧美性大战xxxxx久久久| 日韩精品乱码av一区二区| 精品捆绑美女sm三区| 91官网在线免费观看| 国产一区二区美女诱惑| 夜夜嗨av一区二区三区网页| 精品国产一区二区三区忘忧草| 国产精品伊人色| 波多野结衣一区二区三区 | 亚洲444eee在线观看| 久久久不卡影院| 欧美一区二区视频网站| 色屁屁一区二区| 欧美一区二区视频在线观看2020 | av午夜一区麻豆| 欧美一a一片一级一片| 精品国产伦理网| 久久久久久久久久电影| 26uuu色噜噜精品一区二区| 2017欧美狠狠色| 中文字幕精品在线不卡| 亚洲欧美日韩在线| 视频精品一区二区| 国产激情偷乱视频一区二区三区| 国产一区二区三区四区在线观看| 国产精品一区在线| 色丁香久综合在线久综合在线观看| 欧美日韩国产精品自在自线| 日韩欧美一级精品久久| 国产精品美女久久久久aⅴ| 亚洲高清免费视频| 久草中文综合在线| 成人性生交大片免费看中文网站| 国产91精品露脸国语对白| 91美女片黄在线观看| 精品福利av导航| 亚洲狼人国产精品| 国产九色精品成人porny | 波多野结衣中文字幕一区二区三区| 国产激情一区二区三区| 日本大香伊一区二区三区| 日韩欧美国产麻豆| 成年人午夜久久久| 欧美日韩免费不卡视频一区二区三区| 欧美日韩色综合| 国产欧美精品一区二区色综合| 亚洲色图欧洲色图| 久久99精品久久久久| 99精品国产99久久久久久白柏| 91精品国产色综合久久不卡电影| 一区二区三区国产| 99精品国产热久久91蜜凸| 精品国产第一区二区三区观看体验 | 亚洲精品日韩综合观看成人91| 亚洲综合色自拍一区| 成人性生交大片| 久久一日本道色综合| 亚洲午夜一二三区视频| 91网站最新网址| 国产日产亚洲精品系列| 激情综合一区二区三区| 777亚洲妇女| 天天射综合影视| 91精品国产乱码久久蜜臀| 午夜成人免费视频| 欧美在线观看一区二区| 一二三区精品视频| 在线播放日韩导航| 午夜视频一区二区三区| 717成人午夜免费福利电影| 亚洲天堂av一区| 欧美日韩国产高清一区| 亚洲图片欧美综合| 欧美不卡一区二区三区| 国产精品亚洲第一| 亚洲日本免费电影| 91.com在线观看| 九九精品视频在线看| 国产精品欧美久久久久无广告 | 日韩精品一区国产麻豆| 国产乱人伦精品一区二区在线观看| www国产亚洲精品久久麻豆| 丁香婷婷综合激情五月色| 欧美mv日韩mv亚洲| 99久久伊人精品| 人禽交欧美网站| 国产精品对白交换视频| 欧美丰满高潮xxxx喷水动漫| 国内精品伊人久久久久av一坑| 国产精品久久毛片| 久久久精品综合| 91精品中文字幕一区二区三区| 国产一区二区不卡在线| 日韩av一区二区在线影视| 亚洲欧美日韩电影| 日本一区二区久久| 91免费在线看| 99精品欧美一区| 成人免费观看av| 国产精品亚洲成人| 国产一区二区0| 黄页网站大全一区二区| 美日韩黄色大片| 日本最新不卡在线| 婷婷综合五月天| 午夜欧美大尺度福利影院在线看| 午夜久久久影院| 亚洲天堂免费在线观看视频| 国产精品少妇自拍| 26uuu久久天堂性欧美| 日韩欧美一区二区在线视频| 欧美va亚洲va| 欧美国产日韩a欧美在线观看| 久久这里只有精品6| 国产精品久久久久婷婷二区次| 欧美激情一区在线观看| 亚洲欧洲国产日本综合| 久久综合色婷婷| 中文字幕五月欧美| 26uuu成人网一区二区三区| 久久久久成人黄色影片| 国产精品毛片a∨一区二区三区| 国产精品久久久久婷婷二区次| 亚洲精品日韩综合观看成人91| 亚洲欧美成人一区二区三区| 亚洲一二三级电影| 久久精品国产999大香线蕉| 国产麻豆一精品一av一免费| 99久久精品免费| 91精品国产欧美一区二区18| 久久久久久久久久久久电影| 亚洲视频 欧洲视频| 日韩成人dvd| 91在线视频在线| 久久久精品国产免大香伊| 亚洲综合色自拍一区| 懂色av一区二区三区免费看| 欧美一区二区三区免费观看视频 | 2024国产精品| 奇米综合一区二区三区精品视频| 成人丝袜高跟foot| 久久综合久久综合亚洲| 精品国产免费一区二区三区香蕉| 亚洲综合图片区| 欧美三级视频在线观看| 有坂深雪av一区二区精品| 不卡视频一二三| 国产精品久久久久久久久免费相片| 久久99热99| 久久综合久久鬼色| 国产一区不卡精品| 欧美一区二区三区影视| 亚洲二区视频在线| 在线播放中文一区| 蜜桃传媒麻豆第一区在线观看| 欧美四级电影在线观看| 首页欧美精品中文字幕| 欧美肥妇毛茸茸| 亚洲一区免费视频| 91精品国产综合久久香蕉的特点 | 国产成人精品一区二区三区四区 | 国产乱子伦视频一区二区三区 | av在线不卡免费看| 亚洲国产日日夜夜| 日韩欧美国产小视频| av影院午夜一区| 麻豆精品国产91久久久久久| 精品成人在线观看| 国产91精品久久久久久久网曝门| 亚洲三级在线免费观看| 欧美久久一二区| 国产精品一区二区果冻传媒| 亚洲男人的天堂在线aⅴ视频| 欧美久久一区二区| 国产mv日韩mv欧美| 麻豆精品视频在线| 亚洲国产一区视频| 又紧又大又爽精品一区二区| 国产农村妇女毛片精品久久麻豆| 欧美tickling挠脚心丨vk| 欧美喷水一区二区| 91精品国产综合久久香蕉的特点 | 精品99久久久久久| 欧美成人video| 精品1区2区在线观看| 久久久亚洲精华液精华液精华液| 久久亚区不卡日本| 国产欧美一区二区精品性色 | 国产精品影视网|