亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? datapage.c

?? freescale lcd freescale lcdfreescale lcd
?? C
?? 第 1 頁 / 共 5 頁
字號:
        BRA     done

L_NOPAGE:
        MOVW    0,SP, 0,Y         ;// store the value passed in X (high word)
        STD           2,Y         ;// store the value passed in D (low word)
done:
        PULX                      ;// restore X register
        MOVW    0,SP, 1,+SP       ;// move return address
        RTS
  }
#else /* USE_SEVERAL_PAGES */
  __asm {
        PSHD                      ;// save D register
        LDAA    PAGE_ADDR         ;// save page register
        LDAB    4,SP              ;// load page part of address
        STAB    PAGE_ADDR         ;// set page register
        STX     0,Y               ;// store the value passed in X
        MOVW    0,SP, 2,Y         ;// store the value passed in D (low word)
        STAA    PAGE_ADDR         ;// restore page register
        PULD                      ;// restore D register
        MOVW    0,SP, 1,+SP       ;// move return address
        RTS
  }
#endif /* USE_SEVERAL_PAGES */
}

/*--------------------------- _FAR_COPY_RC --------------------------------
  This runtime routine is used to access paged memory via a runtime function.
  It may also be used if the compiler  option -Cp is not used with the runtime argument.

  Arguments :
  - offset part of the source int the X register
  - page part of the source in the A register
  - offset part of the dest int the Y register
  - page part of the dest in the B register
  - number of bytes to be copied is defined by the next 2 bytes after the return address.

  Result :
  - memory area copied
  - no registers are saved, i.e. all registers may be destroyed
  - all page register still contain the same value as before the call
  - the function returns after the constant defining the number of bytes to be copied


  stack-structure at the loop-label:
     0,SP : destination offset
     2,SP : source page
     3,SP : destination page
     4,SP : source offset
     6,SP : points to length to be copied. This function returns after the size

  A usual call to this function looks like:

  struct Huge src, dest;
    ; ...
    LDX  #src
    LDAA #PAGE(src)
    LDY  #dest
    LDAB #PAGE(dest)
    JSR  _FAR_COPY_RC
    DC.W sizeof(struct Huge)
    ; ...

  --------------------------- _FAR_COPY_RC ----------------------------------*/

#ifdef __cplusplus
extern "C"
#endif
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME

void NEAR _FAR_COPY_RC(void) {
#if USE_SEVERAL_PAGES
  __asm {
        DEX                       ;// source addr-=1, because loop counter ends at 1
        PSHX                      ;// save source offset
        PSHD                      ;// save both pages
        DEY                       ;// destination addr-=1, because loop counter ends at 1
        PSHY                      ;// save destination offset
        LDY     6,SP              ;// Load Return address
        LDX     2,Y+              ;// Load Size to copy
        STY     6,SP              ;// Store adjusted return address
loop:
        LDD     4,SP              ;// load source offset
        LEAY    D,X               ;// calculate actual source address
        LDAB    2,SP              ;// load source page
        __PIC_JSR(_LOAD_FAR_8)    ;// load 1 source byte
        PSHB                      ;// save value
        LDD     0+1,SP            ;// load destination offset
        LEAY    D,X               ;// calculate actual destination address
        PULA                      ;// restore value
        LDAB    3,SP              ;// load destination page
        __PIC_JSR(_STORE_FAR_8)   ;// store one byte
        DEX
        BNE     loop
        LEAS    6,SP              ;// release stack
        _SRET                     ;// debug info only: This is the last instr of a function with a special return
        RTS                       ;// return
  }
#else
  __asm {
        PSHD                      ;// store page registers
        TFR     X,D
        PSHY                      ;// temporary space
        LDY     4,SP              ;// load return address
        ADDD    2,Y+              ;// calculate source end address. Increment return address
        STY     4,SP
        PULY
        PSHD                      ;// store src end address
        LDAB    2,SP              ;// reload source page
        LDAA    PAGE_ADDR         ;// save page register
        PSHA
loop:
        STAB    PAGE_ADDR         ;// set source page
        LDAA    1,X+              ;// load value
        MOVB    4,SP, PAGE_ADDR   ;// set destination page
        STAA    1,Y+
        CPX     1,SP
        BNE     loop

        LDAA    5,SP+             ;// restore old page value and release stack
        STAA    PAGE_ADDR         ;// store it into page register
        _SRET                     ;// debug info only: This is the last instr of a function with a special return
        RTS
  }
#endif
}

/*--------------------------- _FAR_COPY --------------------------------

  The _FAR_COPY runtime routine was used to copied large memory blocks in previous compiler releases.
  However this release now does use _FAR_COPY_RC instead. The only difference is how the size of 
  the area to be copied is passed into the function. For _FAR_COPY the size is passed on the stack just
  above the return address. _FAR_COPY_RC does expect the return address just after the JSR _FAR_COPY_RC call
  in the code of the caller. This allows for denser code calling _FAR_COPY_RC but does also need a slightly
  larger runtime routine and it is slightly slower.
  The _FAR_COPY routine is here now mainly for compatibility with previous releases. 
  The current compiler does not use it. 
  
--------------------------- _FAR_COPY ----------------------------------*/

#ifdef __cplusplus
extern "C"
#endif
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME

void NEAR _FAR_COPY(void) {
#if USE_SEVERAL_PAGES
  __asm {
        DEX                       ;// source addr-=1, because loop counter ends at 1
        PSHX                      ;// save source offset
        PSHD                      ;// save both pages
        DEY                       ;// destination addr-=1, because loop counter ends at 1
        PSHY                      ;// save destination offset
        LDX     8,SP              ;// load counter, assuming counter > 0

loop:
        LDD     4,SP              ;// load source offset
        LEAY    D,X               ;// calculate actual source address
        LDAB    2,SP              ;// load source page
        __PIC_JSR(_LOAD_FAR_8)    ;// load 1 source byte
        PSHB                      ;// save value
        LDD     0+1,SP            ;// load destination offset
        LEAY    D,X               ;// calculate actual destination address
        PULA                      ;// restore value
        LDAB    3,SP              ;// load destination page
        __PIC_JSR(_STORE_FAR_8)   ;// store one byte
        DEX
        BNE     loop
        LDX     6,SP              ;// load return address
        LEAS    10,SP             ;// release stack
        JMP     0,X               ;// return
  }
#else
  __asm {
        PSHD                      ;// store page registers
        TFR     X,D
        ADDD    4,SP              ;// calculate source end address
        STD     4,SP
        PULB                      ;// reload source page
        LDAA    PAGE_ADDR         ;// save page register
        PSHA
loop:
        STAB    PAGE_ADDR         ;// set source page
        LDAA    1,X+              ;// load value
        MOVB    1,SP, PAGE_ADDR   ;// set destination page
        STAA    1,Y+
        CPX     4,SP
        BNE     loop

        LDAA    2,SP+             ;// restore old page value and release stack
        STAA    PAGE_ADDR         ;// store it into page register
        LDX     4,SP+             ;// release stack and load return address
        JMP     0,X               ;// return
  }
#endif
}

#else  /* __HCS12X__  */

/*
  The HCS12X knows two different kind of addresses:
    - Logical addresses. E.g.
       MOVB #page(var),RPAGE
       INC var

    - Global addresses E.g.
       MOVB #page(var),GPAGE
       GLDAA var
       INCA
       GSTAA var

  Global addresses are used with G-Load's and G-Store's, logical addresses are used for all the other instructions
  and occasions. As HC12's or HCS12's do not have the G-Load and G-Store instructions,
  global addresses are not used with these processor families.
  They are only used with HCS12X chips (and maybe future ones deriving from a HCS12X).

  Logical and Global addresses can point to the same object, however the global and logical address of an object
  are different for most objects (actually for all except the registers from 0 to 0x7FF).
  Therefore the compiler needs to transform in between them.

  HCS12X Pointer types:

    The following are logical addresses:
    - all 16 bit pointers
       - "char* __near": always.
       - "char *" in the small and banked memory model
    - 24 bit dpage, epage, ppage or rpage pointers (*1) (note: the first HCS12X compilers may not support these pointer types)
       - "char *__dpage": Note this type only exists for
                          orthogonality with the HC12 A4 chip which has a DPAGE reg.
                          It does not apply to the HCS12X.
       - "char *__epage": 24 bit pointer using the EPAGE register
       - "char *__ppage": 24 bit pointer using the PPAGE register.
                          As the PPAGE is also used for BANKED code,
                          using this pointer type is only legal from non banked code.
       - "char *__rpage": 24 bit pointer using the RPAGE register


    The following are global addresses:
       "char*": in the large memory model (only HCS12X)
       "char* __far": always for HCS12X.

   (*1): For the HC12 and HCS12 "char* __far" and "char*" in the large memory model are also logical.

   Some notes for the HC12/HCS12 programmers.

   The address of a far object for a HC12 and for a HCS12X is different, even if they are at the same place in the memory map.
   For the HC12, a far address is using the logical addresses, for the HCS12X however, far addresses are using global addresses.
   This does cause troubles for the unaware!
   
   The conversion routines implemented in this file support the special HCS12XE RAM mapping (when RAMHM is set).
   To enable this mapping compile this file with the "-MapRAM" compiler option.

  HCS12X Logical Memory map

    Logical Addresses           Used for                shadowed at           page register     Global Address

    0x000000 .. 0x0007FF        Peripheral Registers                          Not Paged         0x000000
    0x??0800 .. 0x??0BFF        Paged EEPROM                                  EPAGE (@0x17)     0x100000+EPAGE*0x0400
    0x000C00 .. 0x000FFF        Non Paged EEPROM        0xFF0800..0xFF0FFF    Not Paged         0x13FC00
    0x??1000 .. 0x??1FFF        Paged RAM                                     RPAGE (@0x16)     0x000000+RPAGE*0x1000
    0x002000 .. 0x003FFF        Non Paged RAM           0xFE1000..0xFF1FFF    Not Paged         0x0FE000
    0x004000 .. 0x007FFF        Non Paged FLASH         0xFC8000..0xFCBFFF    Not Paged         0x7F4000
    0x??8000 .. 0x00BFFF        Paged FLASH                                   PPAGE (@0x30)     0x400000+PPAGE*0x4000
    0x00C000 .. 0x00FFFF        Non Paged FLASH         0xFF8000..0xFFBFFF    Not Paged         0x7FC000

    NA: Not Applicable

  HCS12X Global Memory map

    Global Addresses            Used for                Logical mapped at

    0x000000 .. 0x0007FF        Peripheral Registers    0x000000 .. 0x0007FF
    0x000800 .. 0x000FFF        DMA registers           Not mapped
    0x001000 .. 0x0FFFFF        RAM                     0x??1000 .. 0x??1FFF
    0x0FE000 .. 0x0FFFFF        RAM, Log non paged      0x002000 .. 0x003FFF
    0x100000 .. 0x13FFFF        EEPROM                  0x??0800 .. 0x??0BFF
    0x13FC00 .. 0x13FFFF        EEPROM  non paged       0x000C00 .. 0x000FFF
    0x140000 .. 0x3FFFFF        External Space          Not mapped
    0x400000 .. 0x7FFFFF        FLASH                   0x??8000 .. 0x??BFFF
    0x7F4000 .. 0x7F7FFF        FLASH, Log non paged    0x004000 .. 0x007FFF
    0x7FC000 .. 0x7FFFFF        FLASH, Log non paged    0x00C000 .. 0x00FFFF

  HCS12X Logical Memory map (RAM mapped) 

    Logical Addresses           Used for                shadowed at           page register     Global Address

    0x000000 .. 0x0007FF        Peripheral Registers                          Not Paged         0x000000
    0x??0800 .. 0x??0BFF        Paged EEPROM                                  EPAGE (@0x17)     0x100000+EPAGE*0x0400
    0x000C00 .. 0x000FFF        Non Paged EEPROM        0xFF0800..0xFF0FFF    Not Paged         0x13FC00
    0x??1000 .. 0x??1FFF        Paged RAM                                     RPAGE (@0x16)     0x000000+RPAGE*0x1000
    0x002000 .. 0x003FFF        Non Paged RAM           0xFE1000..0xFF1FFF    Not Paged         0x0FE000
    0x004000 .. 0x007FFF        Non Paged RAM           0xFA1000..0xFD1FFF    Not Paged         0FC000
    0x??8000 .. 0x00BFFF        Paged FLASH                                   PPAGE (@0x30)     0x400000+PPAGE*0x4000
    0x00C000 .. 0x00FFFF        Non Paged FLASH         0xFF8000..0xFFBFFF    Not Paged         0x7FC000

    NA: Not Applicable

  HCS12X Global Memory map

    Global Addresses            Used for                Logical mapped at

    0x000000 .. 0x0007FF        Peripheral Registers    0x000000 .. 0x0007FF
    0x000800 .. 0x000FFF        DMA registers           Not mapped
    0x001000 .. 0x0FFFFF        RAM                     0x??1000 .. 0x??1FFF
    0x0FA000 .. 0x0FFFFF        RAM, Log non paged      0x002000 .. 0x007FFF
    0x100000 .. 0x13FFFF        EEPROM                  0x??0800 .. 0x??0BFF
    0x13FC00 .. 0x13FFFF        EEPROM  non paged       0x000C00 .. 0x000FFF
    0x140000 .. 0x3FFFFF        External Space          Not mapped
    0x400000 .. 0x7FFFFF        FLASH                   0x??8000 .. 0x??BFFF
    0x7F4000 .. 0x7F7FFF        FLASH, Log non paged    Not mapped
    0x7FC000 .. 0x7FFFFF        FLASH, Log non paged    0x00C000 .. 0x00FFFF


  How to read this table:
    For logical addresses, the lower 16 bits of the address do determine in which area the address is,
    if this address is paged, then this entry also controls and which of the EPAGE, PPAGE or RPAGE
    page register is controlling the bits 16 to 23 of the address.
    For global addresses, the bits 16 to 23 have to be in the GPAGE register and the lower 16 bits
    have to be used with the special G load or store instructions (e.g. GLDAA).
    As example the logical address 0x123456 is invalid. Because its lower bits 0x3456 are in a
    non paged area, so the page 0x12 does not exist.
    The address 0xFE1020 however does exist. Do access it, the RPAGE has to contain 0xFE and the
    offset 0x1020 has to be used.

      ORG $7000
        MOVB #0xFE, 0x16 ; RPAGE
        LDAA 0x1020      ; reads at the logical address 0xFE1020

    Because the last two RAM pages are also accessible directly from 0x2000 to 0x3FFF, the
    following shorter code does read the same memory location:

      ORG $7000
        LDAA 0x2020      ; reads at the logical address 0x2020
                         ;   which maps to the same memory as 0xFE1020

    This memory location now also has a global address. For logical 0xFE1020 the global address is 0x0FE020.
    So the following code does once more access the same memory location:

      ORG $7000
        MOVB #0x0F, 0x10 ; GPAGE
        LDAA 0xE020      ; reads at the global address 0x0FE020
                         ;   which maps to the same memory as the logical addr. 0xFE1020

    Therefore every memory location for the HCS12X has up to 3 different addresses.
    Up to two logical and one global.
    Notes.
      - Not every address has a logical equivalent. The external space is only available in the global address space.
        The DMA Registers are also only addressable with global addresses.

      - The PPAGE can only be set if the code is outside of the 0x8000 to 0xBFFF range.
        If not, the next code fetch will be from the new wrong PPAGE value.

      - Inside of the paged area, the highest pages are allocated first. So all HCS12X's do have the FF pages
        (if they have this memory type at all).

      - For RPAGE, the value 0 is illegal. Otherwise the global addresses would overlap with the registers.
        This has the implication that the logical address 0x001000 is strictly seen not valid.


*/

#if __OPTION_ACTIVE__("-MapRAM")
#define __HCS12XE_RAMHM_SET__
#endif

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品在线观看视频| 国产精品国产精品国产专区不蜜 | 99久久免费国产| 国产三级欧美三级日产三级99| 极品美女销魂一区二区三区| 久久久综合网站| youjizz久久| 尤物视频一区二区| 日韩一区二区免费电影| 狠狠色狠狠色综合| 中文字幕在线不卡一区| 在线免费不卡视频| 奇米888四色在线精品| 久久久蜜臀国产一区二区| 成人黄色777网| 婷婷中文字幕一区三区| 久久亚区不卡日本| 91蜜桃视频在线| 视频一区在线视频| 中文字幕av在线一区二区三区| 91女人视频在线观看| 男男成人高潮片免费网站| 国产精品沙发午睡系列990531| 色综合久久中文综合久久97| 青青草国产成人99久久| 在线观看一区不卡| 色菇凉天天综合网| 首页综合国产亚洲丝袜| 久久女同性恋中文字幕| 欧美在线观看视频在线| 国产精品123| 天堂精品中文字幕在线| 中文字幕欧美国产| 日韩一级高清毛片| 一本大道av一区二区在线播放 | 亚洲欧洲精品天堂一级| 91精品国产91久久久久久一区二区| 国产成人综合在线| 亚洲成人7777| 亚洲国产成人在线| 精品免费一区二区三区| 欧美三级电影一区| 91国偷自产一区二区开放时间 | 国产精品自在在线| 日韩一区二区三区精品视频| 无码av中文一区二区三区桃花岛| 欧美成人国产一区二区| 91小视频免费观看| 紧缚捆绑精品一区二区| 午夜精品久久久久久久久久久 | 精品国产乱码久久久久久老虎| 波多野结衣亚洲| 激情文学综合插| 午夜激情一区二区三区| 一区在线观看视频| 国产婷婷色一区二区三区四区| 欧美疯狂做受xxxx富婆| 色噜噜狠狠色综合欧洲selulu| 成人午夜在线播放| 久久av中文字幕片| 免费看黄色91| 日韩高清中文字幕一区| 亚洲福利国产精品| 亚洲在线视频免费观看| 一区二区中文视频| 中文字幕一区二| 国产精品视频一二| 亚洲国产成人在线| 国产亚洲欧美一级| 国产日韩亚洲欧美综合| 久久色视频免费观看| 日韩精品专区在线影院重磅| 欧美肥妇free| 欧美一区二区免费视频| 欧美三级日韩三级| 欧美三电影在线| 欧美色精品天天在线观看视频| 一本久道久久综合中文字幕| 91在线无精精品入口| 91天堂素人约啪| 色噜噜狠狠一区二区三区果冻| 91视频免费看| 色婷婷av一区二区三区大白胸| 91丨porny丨中文| 色综合天天综合| 日本韩国欧美三级| 91高清在线观看| 欧美日韩国产a| 91精品综合久久久久久| 日韩一区二区麻豆国产| 精品精品欲导航| 久久你懂得1024| 国产欧美精品一区aⅴ影院| 国产精品污网站| 亚洲天天做日日做天天谢日日欢 | 欧美剧情片在线观看| 欧美日韩三级视频| 日韩午夜激情电影| 国产欧美一区二区三区在线看蜜臀| 日本一区二区三区高清不卡| 亚洲人xxxx| 日本网站在线观看一区二区三区 | 久久久久久久精| 欧美国产一区在线| 一个色在线综合| 日本不卡123| 成人午夜看片网址| 欧美日韩在线亚洲一区蜜芽| 精品少妇一区二区三区 | zzijzzij亚洲日本少妇熟睡| 在线观看日韩毛片| 日韩午夜中文字幕| 中文字幕亚洲欧美在线不卡| 亚洲图片欧美色图| 国产精品18久久久久久vr| 欧美最新大片在线看| 精品国产污网站| 亚洲精品免费电影| 久久99热国产| 欧美在线观看视频一区二区 | 成人深夜视频在线观看| 色婷婷综合在线| 精品国产网站在线观看| 亚洲激情在线播放| 黄网站免费久久| 91精品福利在线| 欧美一区二区播放| 国产精品二三区| 九九在线精品视频| 日本伦理一区二区| 久久久久久亚洲综合影院红桃 | 欧美精品色一区二区三区| 久久精品亚洲精品国产欧美kt∨ | 国产精品国产三级国产普通话99 | 国产精品自拍在线| 911精品产国品一二三产区| 中文字幕av一区 二区| 美女在线视频一区| 欧美日韩一区高清| 国产精品国产三级国产aⅴ原创| av综合在线播放| 精品国产不卡一区二区三区| 亚洲国产一区二区三区| 国产91精品精华液一区二区三区| 欧美一区2区视频在线观看| 亚洲香蕉伊在人在线观| 99视频国产精品| 亚洲国产精品99久久久久久久久| 久草精品在线观看| 日韩精品专区在线影院观看| 三级久久三级久久| 欧美亚洲高清一区| 亚洲一区二区美女| 91欧美激情一区二区三区成人| 国产欧美一区二区精品仙草咪| 美女mm1313爽爽久久久蜜臀| 91精品国产美女浴室洗澡无遮挡| 亚洲精选一二三| 93久久精品日日躁夜夜躁欧美| 国产亚洲精品aa午夜观看| 国产麻豆欧美日韩一区| 精品国产一区二区三区av性色| 午夜精品久久久久久久久久久 | 精品少妇一区二区三区日产乱码| 午夜视频久久久久久| 欧美在线一二三四区| 亚洲国产精品视频| 欧美三级电影在线观看| 亚洲一区影音先锋| 欧美午夜精品一区二区蜜桃| 一区二区三区欧美久久| 欧美无砖砖区免费| 亚洲午夜精品在线| 欧美精品黑人性xxxx| 蜜桃视频第一区免费观看| 日韩久久精品一区| 狠狠色丁香久久婷婷综合_中 | 亚洲国产精华液网站w| 国产成人精品综合在线观看| 欧美激情中文字幕| 91亚洲精品久久久蜜桃| 亚洲综合一二区| 7777精品久久久大香线蕉| 美腿丝袜亚洲三区| 精品成人在线观看| 床上的激情91.| 一区二区成人在线| 欧美一级日韩免费不卡| 国产一区在线观看视频| 欧美国产一区二区在线观看| www.99精品| 亚洲国产精品一区二区www| 日韩精品中文字幕一区二区三区| 国产麻豆视频精品| 亚洲精品老司机| 欧美一级欧美三级| 成人午夜av影视| 亚洲午夜三级在线| 精品国产乱码久久久久久影片| 成人综合婷婷国产精品久久蜜臀|