亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? selector.r

?? r軟件 另一款可以計算核估計的軟件包 需安裝r軟件
?? R
?? 第 1 頁 / 共 3 頁
字號:
# whichbcv - 1 = BCV1#          - 2 = BCV2 # Hstart - initial bandwidth matrix## Returns# H_BCV###############################################################################Hbcv <- function(x, whichbcv=1, Hstart){  n <- nrow(x)  d <- ncol(x)  D2 <- rbind(c(1,0,0), c(0,1,0), c(0,1,0), c(0,0,1))  RK <- (4*pi)^(-d/2)  # use normal reference b/w matrix for bounds  k <- (((d+8)^((d+6)/2)*pi^(d/2)*RK)/(16*n*gamma((d+8)/2)*(d+2)))^(2/(d+4))  Hmax <- k * abs(var(x))  up.bound <- Hmax  ##lo.bound <- -Hmax  xdiff <- differences(x, upper=FALSE)  if (missing(Hstart))    Hstart <- matrix.sqrt(0.9*Hmax)  bin.par <- binning(x)  bcv1.mat.temp <- function(vechH)  {    H <- invvech(vechH) %*% invvech(vechH)    # ensures that H is positive definite    return(bcv.mat(x, H, H)$bcv)  }      bcv2.mat.temp <- function(vechH)  {    H <- invvech(vechH) %*% invvech(vechH)    return(bcv.mat(x, H, 2*H)$bcv)  }  # derivatives of BCV1 function - see thesis    bcv1.mat.deriv <- function(vechH)  {    H <-  invvech(vechH) %*% invvech(vechH)    Hinv <- chol2inv(chol(H))        psi4.mat <- bcv.mat(x, H, H)$psimat    psi22 <- psi4.mat[1,3]     psi00 <- dmvnorm.sum(x, Sigma=H, inc=0)/(n*(n-1))    psi22.deriv.xxt <- dmvnorm.deriv.2d.xxt.sum(x, r=c(2,2), Sigma=H)/(n*(n-1))    psi22.deriv <- t(D2)%*% vec((Hinv %*% psi22.deriv.xxt %*% Hinv + 2* psi00 *Hinv %*% Hinv - psi22*Hinv)/2)         const <- matrix(c(0,0,1, 0,4,0, 1,0,0), nc=3, byrow=TRUE)    psi4.mat.deriv<- const %x% psi22.deriv        deriv1 <- -1/2*n^{-1}*RK*t(D2) %*% vec(chol2inv(chol(H)))    deriv2 <- 1/2 * psi4.mat %*% vech(H) + 1/4 * (t(psi4.mat.deriv) %*% (vech(H) %x% diag(c(1,1,1)))) %*% vech(H)        return(deriv1 + deriv2)        }    # derivatives of BCV2 function - see thesis     bcv2.mat.deriv <- function(vechH)  {    H <-  invvech(vechH) %*% invvech(vechH)    Hinv <- chol2inv(chol(H))        psi4.mat <- bcv.mat(x, H, 2*H)$psimat    psi22 <- psi4.mat[1,3]     psi00 <- dmvnorm.2d.sum(x, Sigma=2*H, inc=0)/(n*(n-1))    psi22.deriv.xxt <- dmvnorm.deriv.2d.xxt.sum(x,r=c(2,2),Sigma=2*H)/(n*(n-1))    psi22.deriv <- t(D2)%*% vec((Hinv %*% psi22.deriv.xxt %*% Hinv +                                 2* psi00 *Hinv %*% Hinv - psi22*Hinv)/2)         const <- matrix(c(0,0,1, 0,4,0, 1,0,0), nc=3, byrow=TRUE)    psi4.mat.deriv<- const %x% psi22.deriv        deriv1 <- -1/2*n^{-1}*RK*t(D2) %*% vec(chol2inv(chol(H)))    deriv2 <- 1/2 * psi4.mat %*% vech(H) + 1/4 *      (t(psi4.mat.deriv) %*% (vech(H) %x% diag(c(1,1,1)))) %*% vech(H)        return(deriv1 + 2*deriv2)      }  if (whichbcv==1)    result <- optim(vech(Hstart), bcv1.mat.temp, gr=bcv1.mat.deriv,                    method="L-BFGS-B", upper=vech(matrix.sqrt(up.bound)),                    lower=-vech(matrix.sqrt(up.bound)))  else if (whichbcv==2)    result <- optim(vech(Hstart), bcv2.mat.temp, gr=bcv2.mat.deriv,                    method="L-BFGS-B", upper=vech(matrix.sqrt(up.bound)),                    lower=-vech(matrix.sqrt(up.bound)))    return(invvech(result$par) %*% invvech(result$par))}################################################################################ Find the diagonal bandwidth matrix that minimises the BCV for 2-dim# # Parameters# x - data values# whichbcv - 1 = BCV1#          - 2 = BCV2# Hstart - initial bandwidth matrix## Returns# H_BCV, diag###############################################################################Hbcv.diag <- function(x, whichbcv=1, Hstart){  n <- nrow(x)  d <- ncol(x)  ##D2 <- rbind(c(1,0,0), c(0,1,0), c(0,1,0), c(0,0,1))  RK <- (4*pi)^(-d/2)    ## use maximally smoothed b/w matrix for bounds  k <- (((d+8)^((d+6)/2)*pi^(d/2)*RK)/(16*n*gamma((d+8)/2)*(d+2)))^(2/(d+4))  Hmax <- k * abs(var(x))  up.bound <- diag(Hmax)  ##lo.bound <- rep(0,d)    if (missing(Hstart))    Hstart <- 0.9*matrix.sqrt(Hmax)  bcv1.mat.temp <- function(diagH)  {    H <- diag(diagH) %*% diag(diagH)    ## ensures that H is positive definite    return(bcv.mat(x, H, H)$bcv)  }      bcv2.mat.temp <- function(diagH)  {    H <- diag(diagH) %*% diag(diagH)    return(bcv.mat(x, H, 2*H)$bcv)  }    if (whichbcv == 1)    result <- optim(diag(Hstart), bcv1.mat.temp, method="L-BFGS-B", upper=sqrt(up.bound))  else if (whichbcv == 2)    result <- optim(diag(Hstart), bcv2.mat.temp, method="L-BFGS-B", upper=sqrt(up.bound))  return(diag(result$par) %*% diag(result$par))}########################################################################### Identifying elements of Theta_6 matrix########################################################################Theta6.elem <- function(d){  Theta6.mat <- list()  Theta6.mat[[d]] <- list()  for (i in 1:d)    Theta6.mat[[i]] <- list()    for (i in 1:d)    for (j in 1:d)    {        temp <- numeric()      for (k in 1:d)             for (ell in 1:d)              temp <- rbind(temp, elem(i,d)+2*elem(k,d)+2*elem(ell,d)+elem(j,d))            Theta6.mat[[i]][[j]] <- temp    }    return(Theta6.mat)}  ################################################################################ Estimate g_AMSE pilot bandwidth for SCV for 2 to 6 dim## Parameters# Sigma.star - scaled/ sphered variance matrix# Hamise - (estimate) of H_AMISE # n - sample size## Returns# g_AMSE pilot bandwidth###############################################################################gamse.scv.nd <- function(x.star, d, Sigma.star, Hamise, n, binned=FALSE, bin.par){  psihat6 <- vector()  g6.star <- gsamse.nd(Sigma.star, n, 6)   G6.star <- g6.star^2 * diag(d)  if (!binned) x.star.diff <- differences(x.star, upper=FALSE)  ##else bin.par <- binning(x=x.star, bgridsize=bgridsize, H=sqrt(diag(G6.star)))      derivt6 <- deriv.list(d=d, r=6)  for (k in 1:nrow(derivt6))  {    r <- derivt6[k,]    if (binned)      psihat6[k] <- kfe(bin.par=bin.par, G=G6.star, r=r, binned=TRUE)    else       psihat6[k] <- kfe.scalar(x=x.star.diff, r=r, g=g6.star, diff=TRUE)  }     Theta6.mat <- matrix(0, nc=d, nr=d)  Theta6.mat.ind <- Theta6.elem(d)  for (i in 1:d)    for (j in 1:d)    {      temp <- Theta6.mat.ind[[i]][[j]]      temp.sum <- 0      for (k in 1:nrow(temp))        temp.sum <- temp.sum + psihat6[which.mat(temp[k,], derivt6)]      Theta6.mat[i,j] <- temp.sum     }      eye3 <- diag(d)  D4 <- dupl(d)$d  trHamise <- tr(Hamise) ##[1,1] + Hamise[2,2] + Hamise[3,3]   ## required constants - see thesis  Cmu1 <- 1/2*t(D4) %*% vec(Theta6.mat %*% Hamise)  Cmu2 <- 1/8*(4*pi)^(-d/2) * (2*t(D4)%*% vec(Hamise) + trHamise * t(D4) %*% vec(eye3))  num <- 2 * (d+4) * sum(Cmu2*Cmu2)  den <- -(d+2) * sum(Cmu1*Cmu2) + sqrt((d+2)^2 * sum(Cmu1*Cmu2)^2 + 8*(d+4)*sum(Cmu1*Cmu1) * sum(Cmu2*Cmu2))  gamse <- (num / (den*n))^(1/(d+6))   return(gamse)}################################################################################ Computes the smoothed cross validation function for 2 to 6 dim# # Parameters# x - data values# H - bandwidth matrix# G - pilot bandwidth matrix## Returns# SCV(H)###############################################################################scv.1d <- function(x, h, g, binned=TRUE, bin.par, inc=1){  if (!missing(x)) n <- length(x)  if (!missing(bin.par)) n <- sum(bin.par$counts)  scv1 <- dnorm.sum(x=x, bin.par=bin.par, sigma=sqrt(2*h^2+2*g^2), binned=binned, inc=inc)  scv2 <- dnorm.sum(x=x, bin.par=bin.par, sigma=sqrt(h^2+2*g^2), binned=binned, inc=inc)  scv3 <- dnorm.sum(x=x, bin.par=bin.par, sigma=sqrt(2*g^2), binned=binned, inc=inc)  bias2 <-  (scv1 - 2*scv2 + scv3)  if (bias2 < 0) bias2 <- 0  scv <- (n*h)^(-1)*(4*pi)^(-1/2) + n^(-2)*bias2  return(scv)}scv.mat <- function(x, H, G, binned=FALSE, bin.par, diff=FALSE){  n <- nrow(x)  d <- ncol(x)  scv1 <- dmvnorm.sum(x=x, Sigma=2*H + 2*G, inc=1, bin.par=bin.par, binned=binned, diff=diff)  scv2 <- dmvnorm.sum(x=x, Sigma=H + 2*G, inc=1, bin.par=bin.par, binned=binned, diff=diff)  scv3 <- dmvnorm.sum(x=x, Sigma=2*G, inc=1, bin.par=bin.par, binned=binned, diff=diff)  scvmat <- n^(-1)*det(H)^(-1/2)*(4*pi)^(-d/2) + n^(-2)*(scv1 - 2*scv2 + scv3)      return (scvmat)}################################################################################ Find the bandwidth that minimises the SCV for 1 to 6 dim# # Parameters# x - data values# pre - "scale" - pre-scaled data#     - "sphere"- pre-sphered data# Hstart - initial bandwidth matrix## Returns# H_SCV###############################################################################hscv <- function(x, nstage=2, binned=TRUE, bgridsize, plot=FALSE){  sigma <- sd(x)  n <- length(x)  d <- 1  hnorm <- sqrt((4/(n*(d + 2)))^(2/(d + 4)) * var(x))  if (missing(bgridsize)) bgridsize <- 401  ##if (missing(hmin))  hmin <- 0.1*hnorm  ##if (missing(hmax))  hmax <- 2*hnorm  ##bin.par.sub <- binning(x=x[1:min(n, 1e4)], bgridsize=bgridsize, h=hnorm)  bin.par <- binning(x=x, bgridsize=bgridsize, h=hnorm)  if (nstage==1)  {    psihat6 <- psins.1d(r=6, sigma=sigma)    psihat10 <- psins.1d(r=10, sigma=sigma)  }  else if (nstage==2)  {    ##psihat8 <- psins.1d(r=8, sigma=sigma)    ##psihat12 <- psins.1d(r=12, sigma=sigma)    g1 <- (2/(7*n))^(1/9)*2^(1/2)*sigma    g2 <- (2/(11*n))^(1/13)*2^(1/2)*sigma    psihat6 <- kfe.1d(bin.par=bin.par, binned=TRUE, r=6, g=g1, inc=1)    psihat10 <- kfe.1d(bin.par=bin.par, binned=TRUE, r=10, g=g2, inc=1)  }  g3 <- (-6/((2*pi)^(1/2)*psihat6*n))^(1/7)   g4 <- (-210/((2*pi)^(1/2)*psihat10*n))^(1/11)  psihat4 <- kfe.1d(bin.par=bin.par, binned=TRUE, r=4, g=g3, inc=1)  psihat8 <- kfe.1d(bin.par=bin.par, binned=TRUE, r=8, g=g4, inc=1)  C <- (441/(64*pi))^(1/18) * (4*pi)^(-1/5) * psihat4^(-2/5) * psihat8^(-1/9)    scv.1d.temp <- function(h)  {    return(scv.1d(x=x, bin.par=bin.par, h=h, g=C*n^(-23/45)*h^(-2), binned=binned, inc=1))  }  if (plot)  {      hseq <- seq(hmin,hmax, length=400)    hscv.seq <- rep(0, length=length(hseq))    for (i in 1:length(hseq))      hscv.seq[i] <- scv.1d.temp(hseq[i])    plot(hseq, hscv.seq, type="l", xlab="h", ylab="SCV(h)")  }    opt <- optimise(f=scv.1d.temp, interval=c(hmin, hmax))$minimum  if (n >= 1e5) warning("hscv is not always stable for large samples")    return(opt)}Hscv <- function(x, pre="sphere", Hstart, binned=FALSE, bgridsize){  d <- ncol(x)  RK <- (4*pi)^(-d/2)  if (substr(pre,1,2)=="sc")    pre <- "scale"  else if (substr(pre,1,2)=="sp")    pre <- "sphere"  if(!is.matrix(x)) x <- as.matrix(x)  ## pre-transform data  if (pre=="sphere")    x.star <- pre.sphere(x)  else if (pre=="scale")    x.star <- pre.scale(x)  S.star <- var(x.star)  n <- nrow(x.star)  if (n > 1000 & !binned)    warning("Hscv converges slowly for n > 1000 without binned estimation")    if (missing(bgridsize) & binned) bgridsize <- default.gridsize(d)    if (d > 4) binned <- FALSE   if (pre=="scale") S12 <- diag(sqrt(diag(var(x))))  else if (pre=="sphere") S12 <- matrix.sqrt(var(x))    S12inv <- chol2inv(chol(S12))  Hamise <- S12inv %*% Hpi(x=x, nstage=1, pilot="samse", pre="sphere", binned=TRUE, bgridsize=bgridsize) %*% S12inv  if (any(is.na(Hamise)))  {    warning("Pilot bandwidth matrix is NA - replaced with maximally smoothed")    Hamise <- (((d+8)^((d+6)/2)*pi^(d/2)*RK)/(16*(d+2)*n*gamma(d/2+4)))^(2/(d+4))* var(x.star)  }   if (binned)  {    bin.par <- binning(x=x.star, bgridsize=bgridsize)    gamse <- gamse.scv.nd(x.star=x.star, d=d, Sigma.star=S.star, H=Hamise, n=n, binned=TRUE, bin.par=bin.par)  }  else  {    x.star.diff <- differences(x.star, upper=FALSE)    gamse <- gamse.scv.nd(x.star=x.star, d=d, Sigma.star=S.star, H=Hamise, n=n, binned=FALSE)  }  G.amse <- gamse^2 * diag(d)    ## use normal reference bandwidth as initial condition  if (missing(Hstart))     Hstart <- (4/(n*(d + 2)))^(2/(d + 4)) * var(x.star)  else        Hstart <- S12inv %*% Hstart %*% S12inv  Hstart <- matrix.sqrt(Hstart)  scv.mat.temp <- function(vechH)  {    H <- invvech(vechH) %*% invvech(vechH)    return(scv.mat(x.star, H, G.amse))  }    ## back-transform  result <- optim(vech(Hstart), scv.mat.temp, method= "Nelder-Mead")                                        #control=list(abstol=n^(-10*d)))  H <- invvech(result$par) %*% invvech(result$par)  H <- S12 %*% H %*% S12   return(H)}Hscv.diag <- function(x, pre="scale", Hstart, binned=FALSE, bgridsize){  if(!is.matrix(x)) x <- as.matrix(x)  d <- ncol(x)  RK <- (4*pi)^(-d/2)    ## pre-transform data    if (substr(pre,1,2)=="sc")    pre <- "scale"  else if (substr(pre,1,2)=="sp")    pre <- "sphere"  if (pre=="sphere")     stop("Using pre-sphering doesn't give a diagonal bandwidth matrix\n")    if (pre=="sphere")    x.star <- pre.sphere(x)  else if (pre=="scale")    x.star <- pre.scale(x)    S.star <- var(x.star)  n <- nrow(x.star)  if (missing(bgridsize) & binned) bgridsize <- default.gridsize(d)  if (d > 4) binned <- FALSE     if (pre=="scale") S12 <- diag(sqrt(diag(var(x))))  else if (pre=="sphere") S12 <- matrix.sqrt(var(x))  S12inv <- chol2inv(chol(S12))  Hamise <- S12inv %*% Hpi.diag(x=x,nstage=1, pilot="samse", pre="scale", binned=binned, bgridsize=bgridsize) %*% S12inv  if (any(is.na(Hamise)))  {    warning("Pilot bandwidth matrix is NA - replaced with maximally smoothed")    Hamise <- (((d+8)^((d+6)/2)*pi^(d/2)*RK)/(16*(d+2)*n*gamma(d/2+4)))^(2/(d+4))* var(x.star)  }   if (binned)  {      bin.par <- binning(x=x.star, bgridsize=bgridsize, H=diag(diag(Hamise)))        gamse <- gamse.scv.nd(x.star=x.star, d=d, Sigma.star=S.star, H=Hamise, n=n, binned=binned, bin.par=bin.par)  }  else    gamse <- gamse.scv.nd(x.star=x.star, d=d, Sigma.star=S.star, H=Hamise, n=n, binned=FALSE)  G.amse <- gamse^2 * diag(d)    ## use normal reference bandwidth as initial condition  if (missing(Hstart))     Hstart <- (4/(n*(d + 2)))^(2/(d + 4)) * var(x.star)  else        Hstart <- S12inv %*% Hstart %*% S12inv  Hstart <- matrix.sqrt(Hstart)  scv.mat.temp <- function(diagH)  {    ## ensures that H is positive definite    H <- diag(diagH) %*% diag(diagH)    return(scv.mat(x.star, H, G.amse, binned=binned, bin.par=bin.par))  }    ## back-transform  result <- optim(diag(Hstart), scv.mat.temp, method= "Nelder-Mead")  H <- diag(result$par) %*% diag(result$par)  H <- S12 %*% H %*% S12    return(H)}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩久久久| 一区二区三区 在线观看视频| 国产色综合一区| 亚洲国产中文字幕在线视频综合 | 日韩欧美国产高清| 自拍偷拍亚洲欧美日韩| 国产资源在线一区| 欧美喷水一区二区| 综合色中文字幕| 成人性视频网站| 精品久久久久久久久久久久久久久| 中文字幕一区二区三区四区| 国产剧情av麻豆香蕉精品| 欧美视频完全免费看| 中文字幕一区二区三区视频| 岛国av在线一区| 久久久久久麻豆| 麻豆精品在线看| 制服丝袜亚洲播放| 午夜久久久久久| 91国在线观看| 亚洲国产日韩一区二区| 色88888久久久久久影院野外| 中文字幕不卡的av| caoporen国产精品视频| 欧美激情一区二区三区不卡| 国产成人自拍网| 日本一区二区在线不卡| 国产福利91精品一区二区三区| 精品国产乱子伦一区| 麻豆91精品91久久久的内涵| 日韩一区二区影院| 蜜乳av一区二区三区| 日韩欧美另类在线| 国产在线麻豆精品观看| 久久久久99精品一区| 在线免费精品视频| 亚洲色图19p| 91久久国产综合久久| 一区二区久久久| 欧美精品一二三区| 久久精品国内一区二区三区| 久久夜色精品一区| av资源网一区| 亚洲宅男天堂在线观看无病毒| 欧美专区亚洲专区| 日本亚洲视频在线| 中文字幕精品一区二区三区精品| 99久久伊人网影院| 亚洲国产精品影院| 精品福利一区二区三区| 国产传媒久久文化传媒| 国产精品短视频| 欧美三级乱人伦电影| 麻豆国产精品一区二区三区 | 日韩高清欧美激情| 日韩亚洲欧美一区二区三区| 国产乱妇无码大片在线观看| 亚洲日本中文字幕区| 欧美日韩精品系列| 国产在线观看一区二区| 亚洲色图一区二区三区| 91精品福利在线一区二区三区| 国产乱妇无码大片在线观看| 亚洲黄色片在线观看| 亚洲精品一线二线三线无人区| va亚洲va日韩不卡在线观看| 五月天一区二区三区| 欧美激情一区二区三区全黄| 欧美日韩夫妻久久| 成人午夜激情影院| 奇米一区二区三区av| 亚洲欧美日韩在线| 久久综合网色—综合色88| 在线国产电影不卡| 国产精品1区2区| 偷拍与自拍一区| 国产精品久久久久久亚洲伦| 666欧美在线视频| 99久久99久久精品免费观看| 久久精品99久久久| 亚洲成人动漫精品| 亚洲久草在线视频| 国产午夜精品在线观看| 欧美精品丝袜久久久中文字幕| 粉嫩13p一区二区三区| 视频一区在线播放| 亚洲男女一区二区三区| 久久精品日产第一区二区三区高清版| 欧美日本一区二区三区四区| 成人18视频在线播放| 国产乱子伦视频一区二区三区 | 6080亚洲精品一区二区| 一本一道综合狠狠老| 成人app在线| 风间由美性色一区二区三区| 久久99久久精品欧美| 日本亚洲欧美天堂免费| 亚洲一区在线视频| 亚洲女人的天堂| 亚洲免费看黄网站| 亚洲手机成人高清视频| 最新欧美精品一区二区三区| 中文在线一区二区| 国产精品伦理在线| 国产精品私人影院| 最新国产成人在线观看| 国产精品第五页| 国产精品久久毛片| 国产精品大尺度| 亚洲蜜臀av乱码久久精品蜜桃| 欧美国产日韩a欧美在线观看| 久久婷婷久久一区二区三区| 精品国产免费人成在线观看| 欧美精品一区二区在线观看| 欧美精品一区二区三区蜜臀| 久久久.com| 中文在线一区二区| 亚洲天堂精品视频| 亚洲激情综合网| 亚洲高清视频在线| 看电视剧不卡顿的网站| 国产在线观看一区二区| 丁香六月久久综合狠狠色| 成人av资源在线观看| 91亚洲精品久久久蜜桃| 在线观看免费视频综合| 欧美日韩dvd在线观看| 欧美tickle裸体挠脚心vk| 精品国产网站在线观看| 欧美国产日韩亚洲一区| 亚洲乱码中文字幕| 天堂av在线一区| 韩国在线一区二区| kk眼镜猥琐国模调教系列一区二区| 99热这里都是精品| 欧美日韩一区二区三区高清 | 国模一区二区三区白浆| 成人小视频免费在线观看| 色综合久久天天综合网| 777午夜精品视频在线播放| 久久精品日产第一区二区三区高清版 | 成人理论电影网| 在线观看91视频| 日韩三级中文字幕| 国产精品无人区| 午夜欧美2019年伦理| 国产一区二区导航在线播放| 色一情一伦一子一伦一区| 91精品国产麻豆国产自产在线 | 91.麻豆视频| 久久久.com| 图片区日韩欧美亚洲| 成人精品国产福利| 日韩欧美卡一卡二| 亚洲欧美日韩国产手机在线| 久久se这里有精品| 在线精品观看国产| 国产精品素人一区二区| 蜜桃视频第一区免费观看| 一本色道久久综合亚洲91| 久久综合网色—综合色88| 亚洲国产精品影院| 99re成人在线| 久久综合色婷婷| 三级在线观看一区二区| 99re这里都是精品| 欧美精品一区二区三区视频| 亚洲国产精品精华液网站 | 国产麻豆91精品| 欧美三电影在线| 一色屋精品亚洲香蕉网站| 久久精品二区亚洲w码| 欧美日本韩国一区| 一区二区三区91| 色综合久久88色综合天天6 | 欧美一区二区福利在线| 一区二区三区在线视频观看58 | 国产精品一区二区免费不卡 | 伊人性伊人情综合网| 国产91综合一区在线观看| 日韩片之四级片| 午夜在线成人av| 色伊人久久综合中文字幕| 国产精品免费网站在线观看| 国产成人精品亚洲日本在线桃色| 日韩欧美国产成人一区二区| 日韩av在线免费观看不卡| 欧美精品久久一区| 午夜婷婷国产麻豆精品| 在线观看网站黄不卡| 亚洲欧美二区三区| 91成人网在线| 亚洲综合激情另类小说区| 在线看国产一区二区| 亚洲一区二区欧美日韩| 91黄色小视频| 亚洲18色成人| 欧美大胆一级视频| 国产一区二区伦理片|