亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? normal.r

?? r軟件 另一款可以計算核估計的軟件包 需安裝r軟件
?? R
?? 第 1 頁 / 共 3 頁
字號:
################################################################################# Univariate mixture normal densities###############################################################################rnorm.mixt <- function(n=100, mus=0, sigmas=1, props=1, mixt.label=FALSE){  if (!(identical(all.equal(sum(props), 1), TRUE)))    stop("Proportions don't sum to one\n")  ### single component mixture  if (identical(all.equal(props[1], 1), TRUE))  {    if (mixt.label)      rand <- cbind(rnorm(n=n, mean=mus, sd=sigmas), rep(1, n))    else      rand <- rnorm(n=n, mean=mus, sd=sigmas)  }  ### multiple component mixture  else  {    k <- length(props)    n.samp <- sample(1:k, n, replace=TRUE, prob=props)     n.prop <- numeric(0)    ## alternative method for component membership    ##runif.memb <- runif(n=n)    ##memb <- findInterval(runif.memb, c(0,cumsum(props)), rightmost.closed=TRUE)    ##n.prop <- table(memb)        ## compute number taken from each mixture    for (i in 1:k)      n.prop <- c(n.prop, sum(n.samp == i))        rand <- numeric(0)        for (i in 1:k) ##for (i in as.numeric(rownames(n.prop)))    {      ## compute random sample from normal mixture component      if (n.prop[i] > 0)        if (mixt.label)          rand <- rbind(rand, cbind(rnorm(n=n.prop[i], mean=mus[i], sd=sigmas[i]), rep(i, n.prop[i])))        else          rand <- c(rand, rnorm(n=n.prop[i], mean=mus[i], sd=sigmas[i]))    }  }  if (mixt.label)    return(rand[sample(n),])  else    return(rand[sample(n)])}dnorm.mixt <- function(x, mus=0, sigmas=1, props=1){  if (!(identical(all.equal(sum(props), 1), TRUE)))    stop("Proportions don't sum to one\n")  ## single component mixture  if (identical(all.equal(props[1], 1), TRUE))    dens <- dnorm(x, mean=mus, sd=sigmas)  ## multiple component mixture  else     {       k <- length(props)    dens <- 0    ## sum of each normal density value from each component at x      for (i in 1:k)      dens <- dens + props[i]*dnorm(x, mean=mus[i], sd=sigmas[i])  }    return(dens)}   ################################################################################# Partial derivatives of the univariate normal (mean 0) ## ## Parameters## x - points to evaluate at## sigma - std deviation## r - derivative index ### Returns## r-th derivative at x###############################################################################dnorm.deriv <- function(x, mu=0, sigma=1, r=0){  phi <- dnorm(x, mean=mu, sd=sigma)   x <- (x - mu)    if (r==0)    return(phi)  else if (r==1)    derivt <- -x/sigma^2*phi  else if (r==2)    derivt <- (x^2-sigma^2)/sigma^4*phi  else if (r==3)    derivt <- -(x^3 - 3*x*sigma^2)/sigma^6*phi  else if (r==4)    derivt <- (x^4 - 6*x^2*sigma^2 + 3*sigma^4)/sigma^8*phi  else if (r==5)    derivt <- -(x^5 - 10*x^3*sigma^2 + 15*x*sigma^4)/sigma^10*phi  else if (r==6)    derivt <- (x^6 - 15*x^4*sigma^2 + 45*x^2*sigma^4 - 15*sigma^6)/sigma^12*phi  else if (r==7)    derivt <- -(x^7 - 21*x^5*sigma^2 + 105*x^3*sigma^4 - 105*x*sigma^6)/sigma^14*phi  else if (r==8)    derivt <- (x^8 - 28*x^6*sigma^2 + 210*x^4*sigma^4 - 420*x^2*sigma^6 + 105*sigma^8)/sigma^16*phi  else if (r==9)    derivt <- -(x^9 - 36*x^7*sigma^2 + 378*x^5*sigma^4 - 1260*x^3*sigma^6 + 945*x*sigma^8)/sigma^18*phi  else if (r==10)    derivt <- (x^10 - 45*x^8*sigma^2 + 630*x^6*sigma^4 - 3150*x^4*sigma^6 + 4725*x^2*sigma^8 - 945*sigma^10)/sigma^20*phi    if (r > 10)    stop ("Up to 10th order derivatives only")      return(derivt)}################################################################################# Double sum  of K(X_i - X_j) used in density derivative estimation### Parameters## x - points to evaluate## Sigma - variance matrix## inc - 0 - exclude diagonals##     - 1 - include diagonals### Returns## Double sum at x###############################################################################dnorm.sum <- function(x, sigma=1, inc=1, binned=FALSE, bin.par){  d <- 1  if (binned)  {    if (missing(bin.par)) bin.par <- binning(x, h=sigma)      n <- sum(bin.par$counts)    fhatr <- kde.binned(bin.par=bin.par, h=sigma)    sumval <- sum(bin.par$counts * n * fhatr$estimate)    ##sumval <- bkfe(x=bin.par$counts, bandwidth=sigma, drv=0, binned=TRUE, range.x=range(bin.par$eval.points))    if (inc == 0)       sumval <- sumval - n*dnorm.deriv(x=0, mu=0, r=0, sigma=sigma)  }  else  {    n <- length(x)    sumval <- 0    for (i in 1:n)      sumval <- sumval + sum(dnorm(x=x[i] - x, mean=0, sd=sigma))        if (inc == 0)       sumval <- sumval - n*dnorm(x=0, mean=0, sd=sigma)   }     return(sumval)}dnorm.deriv.sum <- function(x, sigma, r, inc=1, binned=FALSE, bin.par, kfe=FALSE){  if (binned)  {    if (missing(bin.par)) bin.par <- binning(x, h=sigma, supp=4+r)      fhatr <- kdde.binned(bin.par=bin.par, h=sigma, r=r)    n <- sum(bin.par$counts)    sumval <- sum(bin.par$counts * n * fhatr$estimate)    ##sumval <- n*bkfe(x=bin.par$counts, bandwidth=sigma, drv=r, binned=TRUE, range.x=range(bin.par$eval.points))  }  else  {    n <- length(x)    sumval <- 0    for (i in 1:n)      sumval <- sumval + sum(dnorm.deriv(x=x[i] - x, mu=0, sigma=sigma, r=r))   }  if (inc == 0)     sumval <- sumval - n*dnorm.deriv(x=0, mu=0, sigma=sigma, r=r)  if (kfe)    if (inc==1) sumval <- sumval/n^2    else sumval <- sumval/(n*(n-1))    return(sumval)  }################################################################################ Multivariate normal densities and derivatives################################################################################################################################################################ Multivariate normal mixture - random sample## ## Parameters## n - number of samples## mus - matrix of means (each row is a vector of means from each component##       density)## Sigmas - matrix of covariance matrices (every d rows is a covariance matrix ##          from each component density) ## props - vector of mixing proportions ## ## Returns## Vector of n observations from the normal mixture ###############################################################################rmvnorm.mixt <- function(n=100, mus=c(0,0), Sigmas=diag(2), props=1, mixt.label=FALSE){  if (!(identical(all.equal(sum(props), 1), TRUE)))    stop("Proportions don't sum to one\n")    #if (is.vector(Sigmas))  ##  return(rnorm.mixt(n=n, mus=mus, sigmas=Sigmas, props=props))    ### single component mixture  if (identical(all.equal(props[1], 1), TRUE))   if (mixt.label)     rand <- cbind(rmvnorm(n=n, mean=mus, sigma=Sigmas), rep(1, n))   else     rand <- cbind(rmvnorm(n=n, mean=mus, sigma=Sigmas))      ### multiple component mixture  else  {    k <- length(props)    d <- ncol(Sigmas)    n.samp <- sample(1:k, n, replace=TRUE, prob=props)     n.prop <- numeric(0)    ## compute number taken from each mixture    for (i in 1:k)      n.prop <- c(n.prop, sum(n.samp == i))        rand <- numeric(0)        for (i in 1:k)    {      ## compute random sample from normal mixture component      if (n.prop[i] > 0)      {               if (mixt.label)          rand <- rbind(rand, cbind(rmvnorm(n=n.prop[i], mean=mus[i,], sigma=Sigmas[((i-1)*d+1) : (i*d),]), rep(i, n.prop[i])))        else          rand <- rbind(rand, rmvnorm(n=n.prop[i], mean=mus[i,], sigma=Sigmas[((i-1)*d+1) : (i*d),]))      }        }  }  return(rand[sample(n),])}################################################################################# Multivariate normal mixture - density values## ## Parameters## x - points to compute density at ## mus - matrix of means## Sigmas - matrix of covariance matrices ## props - vector of mixing proportions ## ## Returns## Density values from the normal mixture (at x)###############################################################################dmvnorm.mixt <- function(x, mus, Sigmas, props=1){    if (!(identical(all.equal(sum(props), 1), TRUE)))    stop("Proportions don't sum to one\n")  if (is.vector(x)) d <- length(x)  else d <- ncol(x)    if (missing(mus)) mus <- rep(0,d)  if (missing(Sigmas)) Sigmas <- diag(d)  ##if (missing(deriv)) deriv <- rep(0,d)     ## single component mixture  if (identical(all.equal(props[1], 1), TRUE))    dens <- dmvnorm(x=x, mean=mus, sigma=Sigmas)  ## multiple component mixture  else     {       k <- length(props)    dens <- 0    ## sum of each normal density value from each component at x      for (i in 1:k)      dens <- dens + props[i]*dmvnorm(x, mean=mus[i,], sigma=Sigmas[((i-1)*d+1):(i*d),])  }    return(dens)}   ################################################################################# Partial derivatives of the multivariate normal## ## Parameters## x - points to evaluate at## Sigma - variance## r - derivative index ### Returns## r-th derivative at x################################################################################## for diagonal Sigmadmvnorm.deriv.diag <- function(x, mu, Sigma, r){  if (is.vector(x))    x <- t(as.matrix(x))  if (is.data.frame(x)) x <- as.matrix(x)  d <- ncol(x)  n <- nrow(x)    if (missing(mu)) mu <- rep(0,d)  if (missing(Sigma)) Sigma <- diag(d)  for (i in 1:n)    x[i,] <- x[i,] - mu      if (d==2) return(dmvnorm.deriv.2d(x=x, Sigma=Sigma, r=r))  if (d==3) return(dmvnorm.deriv.3d(x=x, Sigma=Sigma, r=r))  if (d==4) return(dmvnorm.deriv.4d(x=x, Sigma=Sigma, r=r))  if (d==5) return(dmvnorm.deriv.5d(x=x, Sigma=Sigma, r=r))  if (d==6) return(dmvnorm.deriv.6d(x=x, Sigma=Sigma, r=r))}### for general Sigmadmvnorm.deriv <- function(x, mu, Sigma, r, Sdr.mat){     if (is.vector(x))    x <- t(as.matrix(x))  if (is.data.frame(x)) x <- as.matrix(x)  d <- ncol(x)  n <- nrow(x)    sumr <- sum(r)    if (missing(mu)) mu <- rep(0,d)  if (missing(Sigma)) Sigma <- diag(d)  for (i in 1:n)      x[i,] <- x[i,] - mu    if (missing(Sdr.mat) & d >=2)    Sdr.mat <- Sdr(d=d, r=sumr)  dens <- dmvnorm(x=x, mean=mu, sigma=Sigma)   vSigma <- vec(Sigma)  Sigmainv <- chol2inv(chol(Sigma))  mvh <- matrix(0, nrow=n, ncol=d^sumr)   if (sumr==0)    mvh <- dens  if (sumr==1)    mvh <- x*dens  if (sumr==2)  {    Sinv <- (Sigmainv %x% Sigmainv) %*%  Sdr.mat    for (i in 1:n)      mvh[i,]  <-  Sinv %*% ((x[i,] %x% x[i,]) - vSigma) * dens[i]    ind.mat <- K.sum(diag(d), diag(d))  }  if (sumr==3)  {    Sinv <- K.pow(Sigmainv,3) %*% Sdr.mat    for (i in 1:n)      mvh[i,] <- Sinv %*% (K.pow(x[i,], 3) - 3*x[i,] %x% vSigma) * dens[i]    ind.mat <- K.sum(diag(d), K.sum(diag(d), diag(d)))  }  if (sumr==4)  {        Sinv <- K.pow(Sigmainv,4) %*% Sdr.mat    for (i in 1:n)      mvh[i,] <- Sinv %*% (K.pow(x[i,], 4) - 6*K.pow(x[i,],2) %x% vSigma + 3*vSigma %x% vSigma) * dens[i]    ind.mat <- K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), diag(d))))  }  if (sumr==5)  {    Sinv <- K.pow(Sigmainv,5) %*% Sdr.mat    for (i in 1:n)      mvh[i,] <- Sinv %*% (K.pow(x[i,], 5) - 10*K.pow(x[i,],3) %x% vSigma + 15*x[i,] %x% K.pow(vSigma,2)) * dens[i]    ind.mat <- K.sum(diag(d),K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), diag(d)))))  }  if (sumr==6)  {    Sinv <- K.pow(Sigmainv,6) %*% Sdr.mat    for (i in 1:n)      mvh[i,] <- Sinv %*% (K.pow(x[i,],6) - 15*K.pow(x[i,],4) %x% vSigma + 45*K.pow(x[i,],2) %x% K.pow(vSigma,2) - 15*K.pow(vSigma,3)) * dens[i]    ind.mat <- K.sum(diag(d),K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), diag(d))))))  }  if (sumr==7)  {    Sinv <- K.pow(Sigmainv,7) %*% Sdr.mat    for (i in 1:n)      mvh[i,] <- Sinv %*% (K.pow(x[i,],7) - 21*K.pow(x[i,],5) %x% vSigma + 105*K.pow(x[i,],3) %x% K.pow(vSigma,2)) * dens[i]    ind.mat <- K.sum(diag(d), K.sum(diag(d),K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), diag(d)))))))  }  if (sumr==8)  {    Sinv <- K.pow(Sigmainv,8) %*% Sdr.mat    for (i in 1:n)      mvh[i,] <- Sinv %*% (K.pow(x[i,],8) - 28*K.pow(x[i,],6) %x% vSigma + 210*K.pow(x[i,],4) %x% K.pow(vSigma,2) - 420*K.pow(x[i,],2) %x% K.pow(vSigma,3) + 105*K.pow(vSigma, 4)) * dens[i]    ind.mat <- K.sum(diag(d), K.sum(diag(d), K.sum(diag(d),K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), diag(d))))))))  }  if (sumr > 8)    stop ("Up to 8th order derivatives only")  mvh <- (-1)^sumr*mvh[,!duplicated(ind.mat)]  deriv.ind <- unique(ind.mat)  if (length(r)>1)  {    which.deriv <- which.mat(r, deriv.ind)    if (is.vector(mvh)) return(mvh[which.deriv])    else return(mvh[,which.deriv])  }  else    return(list(deriv=mvh, deriv.ind=deriv.ind))}################################################################################# Double sum  of K(X_i - X_j) used in density derivative estimation### Parameters## x - points to evaluate## Sigma - variance matrix## inc - 0 - exclude diagonals##     - 1 - include diagonals### Returns## Double sum at x##############################################################################dmvnorm.sum <- function(x, Sigma, inc=1, binned=FALSE, bin.par, diff=FALSE){  if (binned)  {    if (!is.diagonal(Sigma))      stop("Binned estimation defined for diagonal Sigma only")    if (missing(bin.par)) bin.par <- binning(x, H=Sigma)          fhatr <- kde.binned(bin.par=bin.par, H=Sigma)$estimate     n <- sum(bin.par$counts)    d <- ncol(Sigma)    sumval <- sum(bin.par$counts * n * fhatr)    if (inc == 0)       sumval <- sumval - n*dmvnorm(x=rep(0,d), mean=rep(0,d), sigma=Sigma)  }  else  {    ### Need to rewrite this for d <=6    d <- ncol(Sigma)    if (d==2) sumval <- dmvnorm.2d.sum(x=x, Sigma=Sigma, inc=inc)    if (d==3) sumval <- dmvnorm.3d.sum(x=x, Sigma=Sigma, inc=inc)    if (d==4) sumval <- dmvnorm.4d.sum(x=x, Sigma=Sigma, inc=inc)    if (d==5) sumval <- dmvnorm.5d.sum(x=x, Sigma=Sigma, inc=inc)    if (d==6) sumval <- dmvnorm.6d.sum(x=x, Sigma=Sigma, inc=inc)    if (d>6)    {      if(!diff)      {        n <- nrow(x)        d <- ncol(x)        difs <- differences(x, upper=TRUE)      }      else      {        n <- (-1 + sqrt(1+8*nrow(x)))/2        d <- ncol(x)        difs <- x      }      sumval <- sum(dmvnorm(difs, mean=rep(0,d), sigma=Sigma))            if (inc==0)        sumval <- 2*sumval - 2*n*dmvnorm(rep(0,d), mean=rep(0,d), sigma=Sigma)      if (inc==1)        sumval <- 2*sumval - n*dmvnorm(rep(0,d), mean=rep(0,d), sigma=Sigma)     }    }  return(sumval)}dmvnorm.deriv.sum <- function(x, Sigma, r, inc=1, binned=FALSE, bin.par, diff=FALSE, kfe=FALSE){  if (binned)  {    if (!is.diagonal(Sigma))      stop("Binned estimation defined for diagonal Sigma only")    if (missing(bin.par)) bin.par <- binning(x, H=Sigma)      fhatr <- kdde.binned(bin.par=bin.par, H=Sigma, r=r)$estimate     n <- sum(bin.par$counts)    d <- ncol(Sigma)    sumval <- sum(bin.par$counts * n * fhatr)  }  else  {    if(!diff)    {      n <- nrow(x)

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本高清不卡一区| 国产成人啪午夜精品网站男同| 91网页版在线| 一区二区三区视频在线观看| 欧美综合亚洲图片综合区| 一区二区三区 在线观看视频| 欧美日韩三级在线| 麻豆久久一区二区| 国产欧美一区二区精品婷婷| av电影在线观看完整版一区二区| 亚洲精品亚洲人成人网在线播放| 欧美伊人久久大香线蕉综合69| 日日夜夜免费精品| 久久综合九色综合欧美98| 成人午夜电影久久影院| 亚洲激情第一区| 欧美一区二区三区免费视频 | 日韩一区二区免费电影| 久久精品国产一区二区三 | 中文乱码免费一区二区| 色综合久久天天综合网| 日韩**一区毛片| 欧美精彩视频一区二区三区| 色哟哟一区二区三区| 日韩成人免费电影| 国产精品拍天天在线| 欧美日韩一区二区三区不卡| 韩国av一区二区三区在线观看| 成人免费一区二区三区在线观看| 欧美日韩一区二区三区四区| 国产精品1024| 日韩精品欧美精品| 国产精品久久国产精麻豆99网站 | 97精品久久久久中文字幕 | 国产综合色产在线精品| 亚洲色图欧洲色图婷婷| 日韩一区二区电影| 91首页免费视频| 激情综合网最新| 亚洲福利视频导航| 国产欧美一区二区三区在线看蜜臀| 91精品办公室少妇高潮对白| 国产麻豆91精品| 日韩精品久久久久久| 亚洲素人一区二区| 久久蜜桃av一区精品变态类天堂| 欧美日韩精品三区| 91网站在线观看视频| 国产成人自拍在线| 精品一区二区av| 性做久久久久久久久| 亚洲品质自拍视频网站| 久久久精品免费网站| 欧美一区二区三区四区高清| 在线精品视频小说1| gogogo免费视频观看亚洲一| 国产真实乱偷精品视频免| 日韩福利视频导航| 亚洲午夜国产一区99re久久| 最新高清无码专区| 国产欧美精品国产国产专区| 精品欧美乱码久久久久久| 欧美丰满少妇xxxxx高潮对白| 色猫猫国产区一区二在线视频| 菠萝蜜视频在线观看一区| 国产精品一区二区三区网站| 久久99久久精品| 老司机午夜精品| 日韩av中文在线观看| 日韩精品91亚洲二区在线观看| 亚洲一区二区三区三| 亚洲一区二区在线播放相泽| 怡红院av一区二区三区| 一级日本不卡的影视| 亚洲卡通动漫在线| 一区二区三区欧美久久| 亚洲精品欧美二区三区中文字幕| 亚洲欧美日韩国产一区二区三区| 日韩一区中文字幕| 亚洲夂夂婷婷色拍ww47| 亚洲一区av在线| 日韩影院在线观看| 麻豆国产欧美一区二区三区| 精品一区二区在线播放| 韩日av一区二区| 国产成人亚洲精品青草天美 | 日韩主播视频在线| 美女视频网站黄色亚洲| 国产一区二区成人久久免费影院 | 国产揄拍国内精品对白| 精品在线观看视频| 国产主播一区二区| 成人app下载| 欧美性做爰猛烈叫床潮| 欧美一区二区三区免费大片| 日韩欧美亚洲另类制服综合在线| 精品久久久久久最新网址| 国产欧美日韩另类一区| 亚洲色图一区二区| 爽好久久久欧美精品| 国内精品伊人久久久久av一坑| 成人精品国产一区二区4080| 色婷婷狠狠综合| 91麻豆精品国产91久久久久久久久| 日韩精品专区在线| 国产精品理伦片| 日日噜噜夜夜狠狠视频欧美人| 国产一区二区在线影院| 91老师片黄在线观看| 91精品国产91久久久久久一区二区| 精品处破学生在线二十三| ...xxx性欧美| 人禽交欧美网站| 高清beeg欧美| 8x8x8国产精品| 国产精品美女久久久久久2018| 亚洲午夜免费电影| 国产成人精品综合在线观看| 欧美性猛片xxxx免费看久爱| 精品国一区二区三区| 亚洲人精品午夜| 久久av老司机精品网站导航| 91麻豆123| 久久网站最新地址| 午夜欧美在线一二页| 成人国产精品免费网站| 3d成人h动漫网站入口| 国产精品看片你懂得| 捆绑变态av一区二区三区| 97se亚洲国产综合自在线不卡 | 久久99精品久久久久久国产越南| 99这里只有精品| 欧美zozo另类异族| 亚洲成人av一区| 一本一本大道香蕉久在线精品| 精品国产髙清在线看国产毛片| 一区二区三区电影在线播| 国产福利一区二区三区视频| 日韩一区二区三区在线视频| 一区二区三区高清| av福利精品导航| 亚洲国产综合色| 色综合久久久网| 欧美国产1区2区| 国产资源在线一区| 日韩欧美一卡二卡| 午夜电影久久久| 欧美性色欧美a在线播放| 综合久久国产九一剧情麻豆| 国产成人在线视频网址| 精品99999| 另类成人小视频在线| 欧美一级生活片| 日韩精品乱码av一区二区| 欧美日韩精品专区| 亚洲福利一二三区| 欧美性生活一区| 亚洲一区二区四区蜜桃| 色综合久久99| 亚洲精品写真福利| 91小宝寻花一区二区三区| 日韩一区中文字幕| 99国产精品久久久久久久久久久 | 色国产精品一区在线观看| 国产精品人人做人人爽人人添| 国产精品一区免费在线观看| 337p日本欧洲亚洲大胆色噜噜| 久久99国产精品久久99 | 欧美日韩精品系列| 五月天精品一区二区三区| 欧美日韩一二区| 石原莉奈一区二区三区在线观看| 欧美网站大全在线观看| 亚洲午夜av在线| 欧美精品久久一区二区三区| 日韩成人精品视频| 欧美大片在线观看| 国产精品中文字幕欧美| 欧美激情一区不卡| 91亚洲资源网| 午夜不卡av在线| 欧美成人a视频| 国内精品国产成人| 国产精品久久久久久亚洲伦| 99精品桃花视频在线观看| 亚洲一区在线视频观看| 91麻豆精品国产无毒不卡在线观看| 蜜臀久久99精品久久久久久9| 精品久久国产老人久久综合| 粉嫩欧美一区二区三区高清影视| 国产精品热久久久久夜色精品三区| 99精品欧美一区二区三区综合在线| 亚洲精品日日夜夜| 欧美肥大bbwbbw高潮| 狠狠色丁香九九婷婷综合五月| 中文字幕免费不卡在线| 在线观看网站黄不卡| 免费黄网站欧美| 国产精品久久毛片a| 欧美影院午夜播放|