亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? normal.r

?? r軟件 另一款可以計算核估計的軟件包 需安裝r軟件
?? R
?? 第 1 頁 / 共 3 頁
字號:
################################################################################# Univariate mixture normal densities###############################################################################rnorm.mixt <- function(n=100, mus=0, sigmas=1, props=1, mixt.label=FALSE){  if (!(identical(all.equal(sum(props), 1), TRUE)))    stop("Proportions don't sum to one\n")  ### single component mixture  if (identical(all.equal(props[1], 1), TRUE))  {    if (mixt.label)      rand <- cbind(rnorm(n=n, mean=mus, sd=sigmas), rep(1, n))    else      rand <- rnorm(n=n, mean=mus, sd=sigmas)  }  ### multiple component mixture  else  {    k <- length(props)    n.samp <- sample(1:k, n, replace=TRUE, prob=props)     n.prop <- numeric(0)    ## alternative method for component membership    ##runif.memb <- runif(n=n)    ##memb <- findInterval(runif.memb, c(0,cumsum(props)), rightmost.closed=TRUE)    ##n.prop <- table(memb)        ## compute number taken from each mixture    for (i in 1:k)      n.prop <- c(n.prop, sum(n.samp == i))        rand <- numeric(0)        for (i in 1:k) ##for (i in as.numeric(rownames(n.prop)))    {      ## compute random sample from normal mixture component      if (n.prop[i] > 0)        if (mixt.label)          rand <- rbind(rand, cbind(rnorm(n=n.prop[i], mean=mus[i], sd=sigmas[i]), rep(i, n.prop[i])))        else          rand <- c(rand, rnorm(n=n.prop[i], mean=mus[i], sd=sigmas[i]))    }  }  if (mixt.label)    return(rand[sample(n),])  else    return(rand[sample(n)])}dnorm.mixt <- function(x, mus=0, sigmas=1, props=1){  if (!(identical(all.equal(sum(props), 1), TRUE)))    stop("Proportions don't sum to one\n")  ## single component mixture  if (identical(all.equal(props[1], 1), TRUE))    dens <- dnorm(x, mean=mus, sd=sigmas)  ## multiple component mixture  else     {       k <- length(props)    dens <- 0    ## sum of each normal density value from each component at x      for (i in 1:k)      dens <- dens + props[i]*dnorm(x, mean=mus[i], sd=sigmas[i])  }    return(dens)}   ################################################################################# Partial derivatives of the univariate normal (mean 0) ## ## Parameters## x - points to evaluate at## sigma - std deviation## r - derivative index ### Returns## r-th derivative at x###############################################################################dnorm.deriv <- function(x, mu=0, sigma=1, r=0){  phi <- dnorm(x, mean=mu, sd=sigma)   x <- (x - mu)    if (r==0)    return(phi)  else if (r==1)    derivt <- -x/sigma^2*phi  else if (r==2)    derivt <- (x^2-sigma^2)/sigma^4*phi  else if (r==3)    derivt <- -(x^3 - 3*x*sigma^2)/sigma^6*phi  else if (r==4)    derivt <- (x^4 - 6*x^2*sigma^2 + 3*sigma^4)/sigma^8*phi  else if (r==5)    derivt <- -(x^5 - 10*x^3*sigma^2 + 15*x*sigma^4)/sigma^10*phi  else if (r==6)    derivt <- (x^6 - 15*x^4*sigma^2 + 45*x^2*sigma^4 - 15*sigma^6)/sigma^12*phi  else if (r==7)    derivt <- -(x^7 - 21*x^5*sigma^2 + 105*x^3*sigma^4 - 105*x*sigma^6)/sigma^14*phi  else if (r==8)    derivt <- (x^8 - 28*x^6*sigma^2 + 210*x^4*sigma^4 - 420*x^2*sigma^6 + 105*sigma^8)/sigma^16*phi  else if (r==9)    derivt <- -(x^9 - 36*x^7*sigma^2 + 378*x^5*sigma^4 - 1260*x^3*sigma^6 + 945*x*sigma^8)/sigma^18*phi  else if (r==10)    derivt <- (x^10 - 45*x^8*sigma^2 + 630*x^6*sigma^4 - 3150*x^4*sigma^6 + 4725*x^2*sigma^8 - 945*sigma^10)/sigma^20*phi    if (r > 10)    stop ("Up to 10th order derivatives only")      return(derivt)}################################################################################# Double sum  of K(X_i - X_j) used in density derivative estimation### Parameters## x - points to evaluate## Sigma - variance matrix## inc - 0 - exclude diagonals##     - 1 - include diagonals### Returns## Double sum at x###############################################################################dnorm.sum <- function(x, sigma=1, inc=1, binned=FALSE, bin.par){  d <- 1  if (binned)  {    if (missing(bin.par)) bin.par <- binning(x, h=sigma)      n <- sum(bin.par$counts)    fhatr <- kde.binned(bin.par=bin.par, h=sigma)    sumval <- sum(bin.par$counts * n * fhatr$estimate)    ##sumval <- bkfe(x=bin.par$counts, bandwidth=sigma, drv=0, binned=TRUE, range.x=range(bin.par$eval.points))    if (inc == 0)       sumval <- sumval - n*dnorm.deriv(x=0, mu=0, r=0, sigma=sigma)  }  else  {    n <- length(x)    sumval <- 0    for (i in 1:n)      sumval <- sumval + sum(dnorm(x=x[i] - x, mean=0, sd=sigma))        if (inc == 0)       sumval <- sumval - n*dnorm(x=0, mean=0, sd=sigma)   }     return(sumval)}dnorm.deriv.sum <- function(x, sigma, r, inc=1, binned=FALSE, bin.par, kfe=FALSE){  if (binned)  {    if (missing(bin.par)) bin.par <- binning(x, h=sigma, supp=4+r)      fhatr <- kdde.binned(bin.par=bin.par, h=sigma, r=r)    n <- sum(bin.par$counts)    sumval <- sum(bin.par$counts * n * fhatr$estimate)    ##sumval <- n*bkfe(x=bin.par$counts, bandwidth=sigma, drv=r, binned=TRUE, range.x=range(bin.par$eval.points))  }  else  {    n <- length(x)    sumval <- 0    for (i in 1:n)      sumval <- sumval + sum(dnorm.deriv(x=x[i] - x, mu=0, sigma=sigma, r=r))   }  if (inc == 0)     sumval <- sumval - n*dnorm.deriv(x=0, mu=0, sigma=sigma, r=r)  if (kfe)    if (inc==1) sumval <- sumval/n^2    else sumval <- sumval/(n*(n-1))    return(sumval)  }################################################################################ Multivariate normal densities and derivatives################################################################################################################################################################ Multivariate normal mixture - random sample## ## Parameters## n - number of samples## mus - matrix of means (each row is a vector of means from each component##       density)## Sigmas - matrix of covariance matrices (every d rows is a covariance matrix ##          from each component density) ## props - vector of mixing proportions ## ## Returns## Vector of n observations from the normal mixture ###############################################################################rmvnorm.mixt <- function(n=100, mus=c(0,0), Sigmas=diag(2), props=1, mixt.label=FALSE){  if (!(identical(all.equal(sum(props), 1), TRUE)))    stop("Proportions don't sum to one\n")    #if (is.vector(Sigmas))  ##  return(rnorm.mixt(n=n, mus=mus, sigmas=Sigmas, props=props))    ### single component mixture  if (identical(all.equal(props[1], 1), TRUE))   if (mixt.label)     rand <- cbind(rmvnorm(n=n, mean=mus, sigma=Sigmas), rep(1, n))   else     rand <- cbind(rmvnorm(n=n, mean=mus, sigma=Sigmas))      ### multiple component mixture  else  {    k <- length(props)    d <- ncol(Sigmas)    n.samp <- sample(1:k, n, replace=TRUE, prob=props)     n.prop <- numeric(0)    ## compute number taken from each mixture    for (i in 1:k)      n.prop <- c(n.prop, sum(n.samp == i))        rand <- numeric(0)        for (i in 1:k)    {      ## compute random sample from normal mixture component      if (n.prop[i] > 0)      {               if (mixt.label)          rand <- rbind(rand, cbind(rmvnorm(n=n.prop[i], mean=mus[i,], sigma=Sigmas[((i-1)*d+1) : (i*d),]), rep(i, n.prop[i])))        else          rand <- rbind(rand, rmvnorm(n=n.prop[i], mean=mus[i,], sigma=Sigmas[((i-1)*d+1) : (i*d),]))      }        }  }  return(rand[sample(n),])}################################################################################# Multivariate normal mixture - density values## ## Parameters## x - points to compute density at ## mus - matrix of means## Sigmas - matrix of covariance matrices ## props - vector of mixing proportions ## ## Returns## Density values from the normal mixture (at x)###############################################################################dmvnorm.mixt <- function(x, mus, Sigmas, props=1){    if (!(identical(all.equal(sum(props), 1), TRUE)))    stop("Proportions don't sum to one\n")  if (is.vector(x)) d <- length(x)  else d <- ncol(x)    if (missing(mus)) mus <- rep(0,d)  if (missing(Sigmas)) Sigmas <- diag(d)  ##if (missing(deriv)) deriv <- rep(0,d)     ## single component mixture  if (identical(all.equal(props[1], 1), TRUE))    dens <- dmvnorm(x=x, mean=mus, sigma=Sigmas)  ## multiple component mixture  else     {       k <- length(props)    dens <- 0    ## sum of each normal density value from each component at x      for (i in 1:k)      dens <- dens + props[i]*dmvnorm(x, mean=mus[i,], sigma=Sigmas[((i-1)*d+1):(i*d),])  }    return(dens)}   ################################################################################# Partial derivatives of the multivariate normal## ## Parameters## x - points to evaluate at## Sigma - variance## r - derivative index ### Returns## r-th derivative at x################################################################################## for diagonal Sigmadmvnorm.deriv.diag <- function(x, mu, Sigma, r){  if (is.vector(x))    x <- t(as.matrix(x))  if (is.data.frame(x)) x <- as.matrix(x)  d <- ncol(x)  n <- nrow(x)    if (missing(mu)) mu <- rep(0,d)  if (missing(Sigma)) Sigma <- diag(d)  for (i in 1:n)    x[i,] <- x[i,] - mu      if (d==2) return(dmvnorm.deriv.2d(x=x, Sigma=Sigma, r=r))  if (d==3) return(dmvnorm.deriv.3d(x=x, Sigma=Sigma, r=r))  if (d==4) return(dmvnorm.deriv.4d(x=x, Sigma=Sigma, r=r))  if (d==5) return(dmvnorm.deriv.5d(x=x, Sigma=Sigma, r=r))  if (d==6) return(dmvnorm.deriv.6d(x=x, Sigma=Sigma, r=r))}### for general Sigmadmvnorm.deriv <- function(x, mu, Sigma, r, Sdr.mat){     if (is.vector(x))    x <- t(as.matrix(x))  if (is.data.frame(x)) x <- as.matrix(x)  d <- ncol(x)  n <- nrow(x)    sumr <- sum(r)    if (missing(mu)) mu <- rep(0,d)  if (missing(Sigma)) Sigma <- diag(d)  for (i in 1:n)      x[i,] <- x[i,] - mu    if (missing(Sdr.mat) & d >=2)    Sdr.mat <- Sdr(d=d, r=sumr)  dens <- dmvnorm(x=x, mean=mu, sigma=Sigma)   vSigma <- vec(Sigma)  Sigmainv <- chol2inv(chol(Sigma))  mvh <- matrix(0, nrow=n, ncol=d^sumr)   if (sumr==0)    mvh <- dens  if (sumr==1)    mvh <- x*dens  if (sumr==2)  {    Sinv <- (Sigmainv %x% Sigmainv) %*%  Sdr.mat    for (i in 1:n)      mvh[i,]  <-  Sinv %*% ((x[i,] %x% x[i,]) - vSigma) * dens[i]    ind.mat <- K.sum(diag(d), diag(d))  }  if (sumr==3)  {    Sinv <- K.pow(Sigmainv,3) %*% Sdr.mat    for (i in 1:n)      mvh[i,] <- Sinv %*% (K.pow(x[i,], 3) - 3*x[i,] %x% vSigma) * dens[i]    ind.mat <- K.sum(diag(d), K.sum(diag(d), diag(d)))  }  if (sumr==4)  {        Sinv <- K.pow(Sigmainv,4) %*% Sdr.mat    for (i in 1:n)      mvh[i,] <- Sinv %*% (K.pow(x[i,], 4) - 6*K.pow(x[i,],2) %x% vSigma + 3*vSigma %x% vSigma) * dens[i]    ind.mat <- K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), diag(d))))  }  if (sumr==5)  {    Sinv <- K.pow(Sigmainv,5) %*% Sdr.mat    for (i in 1:n)      mvh[i,] <- Sinv %*% (K.pow(x[i,], 5) - 10*K.pow(x[i,],3) %x% vSigma + 15*x[i,] %x% K.pow(vSigma,2)) * dens[i]    ind.mat <- K.sum(diag(d),K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), diag(d)))))  }  if (sumr==6)  {    Sinv <- K.pow(Sigmainv,6) %*% Sdr.mat    for (i in 1:n)      mvh[i,] <- Sinv %*% (K.pow(x[i,],6) - 15*K.pow(x[i,],4) %x% vSigma + 45*K.pow(x[i,],2) %x% K.pow(vSigma,2) - 15*K.pow(vSigma,3)) * dens[i]    ind.mat <- K.sum(diag(d),K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), diag(d))))))  }  if (sumr==7)  {    Sinv <- K.pow(Sigmainv,7) %*% Sdr.mat    for (i in 1:n)      mvh[i,] <- Sinv %*% (K.pow(x[i,],7) - 21*K.pow(x[i,],5) %x% vSigma + 105*K.pow(x[i,],3) %x% K.pow(vSigma,2)) * dens[i]    ind.mat <- K.sum(diag(d), K.sum(diag(d),K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), diag(d)))))))  }  if (sumr==8)  {    Sinv <- K.pow(Sigmainv,8) %*% Sdr.mat    for (i in 1:n)      mvh[i,] <- Sinv %*% (K.pow(x[i,],8) - 28*K.pow(x[i,],6) %x% vSigma + 210*K.pow(x[i,],4) %x% K.pow(vSigma,2) - 420*K.pow(x[i,],2) %x% K.pow(vSigma,3) + 105*K.pow(vSigma, 4)) * dens[i]    ind.mat <- K.sum(diag(d), K.sum(diag(d), K.sum(diag(d),K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), K.sum(diag(d), diag(d))))))))  }  if (sumr > 8)    stop ("Up to 8th order derivatives only")  mvh <- (-1)^sumr*mvh[,!duplicated(ind.mat)]  deriv.ind <- unique(ind.mat)  if (length(r)>1)  {    which.deriv <- which.mat(r, deriv.ind)    if (is.vector(mvh)) return(mvh[which.deriv])    else return(mvh[,which.deriv])  }  else    return(list(deriv=mvh, deriv.ind=deriv.ind))}################################################################################# Double sum  of K(X_i - X_j) used in density derivative estimation### Parameters## x - points to evaluate## Sigma - variance matrix## inc - 0 - exclude diagonals##     - 1 - include diagonals### Returns## Double sum at x##############################################################################dmvnorm.sum <- function(x, Sigma, inc=1, binned=FALSE, bin.par, diff=FALSE){  if (binned)  {    if (!is.diagonal(Sigma))      stop("Binned estimation defined for diagonal Sigma only")    if (missing(bin.par)) bin.par <- binning(x, H=Sigma)          fhatr <- kde.binned(bin.par=bin.par, H=Sigma)$estimate     n <- sum(bin.par$counts)    d <- ncol(Sigma)    sumval <- sum(bin.par$counts * n * fhatr)    if (inc == 0)       sumval <- sumval - n*dmvnorm(x=rep(0,d), mean=rep(0,d), sigma=Sigma)  }  else  {    ### Need to rewrite this for d <=6    d <- ncol(Sigma)    if (d==2) sumval <- dmvnorm.2d.sum(x=x, Sigma=Sigma, inc=inc)    if (d==3) sumval <- dmvnorm.3d.sum(x=x, Sigma=Sigma, inc=inc)    if (d==4) sumval <- dmvnorm.4d.sum(x=x, Sigma=Sigma, inc=inc)    if (d==5) sumval <- dmvnorm.5d.sum(x=x, Sigma=Sigma, inc=inc)    if (d==6) sumval <- dmvnorm.6d.sum(x=x, Sigma=Sigma, inc=inc)    if (d>6)    {      if(!diff)      {        n <- nrow(x)        d <- ncol(x)        difs <- differences(x, upper=TRUE)      }      else      {        n <- (-1 + sqrt(1+8*nrow(x)))/2        d <- ncol(x)        difs <- x      }      sumval <- sum(dmvnorm(difs, mean=rep(0,d), sigma=Sigma))            if (inc==0)        sumval <- 2*sumval - 2*n*dmvnorm(rep(0,d), mean=rep(0,d), sigma=Sigma)      if (inc==1)        sumval <- 2*sumval - n*dmvnorm(rep(0,d), mean=rep(0,d), sigma=Sigma)     }    }  return(sumval)}dmvnorm.deriv.sum <- function(x, Sigma, r, inc=1, binned=FALSE, bin.par, diff=FALSE, kfe=FALSE){  if (binned)  {    if (!is.diagonal(Sigma))      stop("Binned estimation defined for diagonal Sigma only")    if (missing(bin.par)) bin.par <- binning(x, H=Sigma)      fhatr <- kdde.binned(bin.par=bin.par, H=Sigma, r=r)$estimate     n <- sum(bin.par$counts)    d <- ncol(Sigma)    sumval <- sum(bin.par$counts * n * fhatr)  }  else  {    if(!diff)    {      n <- nrow(x)

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产酒店精品激情| 久久se精品一区二区| 久久久久久97三级| 日韩欧美黄色影院| 日韩写真欧美这视频| 欧美欧美午夜aⅴ在线观看| 欧美日韩综合一区| 欧美日韩精品免费| 4hu四虎永久在线影院成人| 欧美肥妇bbw| 日韩视频一区二区| 2022国产精品视频| 亚洲国产成人私人影院tom | 最新高清无码专区| 亚洲欧美一区二区不卡| 亚洲精品国产第一综合99久久| 亚洲激情图片一区| 视频在线观看一区| 国产在线不卡视频| 99久久久精品免费观看国产蜜| 91麻豆免费观看| 在线观看日韩一区| 日韩一区二区三区四区五区六区| 欧美成人精品1314www| wwwwxxxxx欧美| 亚洲欧美在线视频观看| 五月婷婷久久丁香| 国产一区二区看久久| 99久久免费国产| 欧美男女性生活在线直播观看| 日韩网站在线看片你懂的| 久久久精品中文字幕麻豆发布| 中文字幕一区二区三区四区| 天天操天天色综合| 丁香另类激情小说| 欧美精品v日韩精品v韩国精品v| 久久综合久色欧美综合狠狠| 亚洲男人天堂av网| 国产一区高清在线| 欧美色图在线观看| 国产欧美一区二区精品婷婷| 亚洲综合在线第一页| 国产伦精一区二区三区| 欧美中文字幕一区| 国产精品色在线观看| 亚洲大型综合色站| 不卡av在线免费观看| 日韩精品综合一本久道在线视频| 中文字幕中文字幕一区二区| 久久电影网电视剧免费观看| 欧美亚洲尤物久久| 国产精品久久久久久一区二区三区| 日产国产欧美视频一区精品| 99视频热这里只有精品免费| 欧美xxxxxxxx| 日韩中文字幕区一区有砖一区| 9人人澡人人爽人人精品| 日韩一区二区三区视频| 一区二区不卡在线播放| eeuss国产一区二区三区| 欧美一级免费大片| 亚洲图片欧美综合| 一本一本久久a久久精品综合麻豆| ww亚洲ww在线观看国产| 捆绑调教一区二区三区| 欧美精品成人一区二区三区四区| 一区二区三区视频在线看| 高清不卡在线观看| 久久久久久久久久看片| 久久精品理论片| 日韩丝袜情趣美女图片| 美脚の诱脚舐め脚责91| 欧美一区二区视频免费观看| 亚洲成a人在线观看| 欧美日韩一二三| 亚洲va欧美va人人爽| 欧美乱熟臀69xxxxxx| 亚洲综合一区二区精品导航| 欧美手机在线视频| 亚洲一区在线观看免费观看电影高清| 色综合亚洲欧洲| 一区二区三区av电影| 欧美午夜一区二区三区免费大片| 亚洲在线视频免费观看| 欧美影院一区二区| 亚洲成人中文在线| 欧美日韩不卡在线| 久久疯狂做爰流白浆xx| 久久久久国色av免费看影院| 国产成人免费在线| 亚洲欧美在线视频| 欧美色图12p| 麻豆精品一区二区三区| 久久久亚洲高清| 91亚洲国产成人精品一区二区三| 亚洲毛片av在线| 91精品国产91综合久久蜜臀| 精品一区二区国语对白| 国产精品乱码人人做人人爱| 色综合久久精品| 日产欧产美韩系列久久99| 久久嫩草精品久久久久| zzijzzij亚洲日本少妇熟睡| 亚洲一区在线观看视频| 国产精品二三区| 欧美久久久久久久久久| 国产伦理精品不卡| 亚洲精品伦理在线| 日韩视频在线永久播放| www.66久久| 日韩avvvv在线播放| 中文在线一区二区| 91精品国产福利| va亚洲va日韩不卡在线观看| 日韩电影在线一区| 中文字幕一区二区三区不卡| 欧美日韩国产首页| 成人毛片视频在线观看| 日韩av一区二区三区四区| 国产清纯美女被跳蛋高潮一区二区久久w| eeuss鲁片一区二区三区在线看| 日日夜夜精品视频免费| 国产精品久久久久影院亚瑟 | 视频在线观看91| 国产日产欧美一区| 91精品视频网| 91麻豆国产在线观看| 国产一区二区三区蝌蚪| 午夜精品福利一区二区三区蜜桃| 日本一区二区三区在线不卡| 欧美一区二区三区在线观看| 91同城在线观看| 国产suv精品一区二区6| 美国十次综合导航| 午夜精品免费在线| 亚洲尤物视频在线| 国产精品高潮呻吟| 国产嫩草影院久久久久| 久久先锋影音av鲁色资源网| 91精品国产综合久久精品| 欧美这里有精品| 91亚洲资源网| 99国产精品国产精品毛片| 国产成人a级片| 精品在线一区二区三区| 青草国产精品久久久久久| 亚洲不卡在线观看| 天天免费综合色| 亚洲成a人v欧美综合天堂 | 欧美日韩国产免费一区二区 | 夜夜爽夜夜爽精品视频| 亚洲狠狠丁香婷婷综合久久久| 国产精品久久久久久久久晋中 | 国产精品久久久久久久午夜片| 欧美精品一区二区精品网| 欧美大肚乱孕交hd孕妇| 欧美tk—视频vk| 久久综合九色综合97婷婷| 久久久噜噜噜久久中文字幕色伊伊 | 97精品电影院| 97精品视频在线观看自产线路二| 97se亚洲国产综合自在线 | 欧美日韩一级大片网址| 久久女同性恋中文字幕| 久久亚洲春色中文字幕久久久| 欧美大黄免费观看| 国产视频一区二区三区在线观看| 2023国产精品视频| 国产蜜臀av在线一区二区三区| 国产精品久久久久天堂| 一区二区久久久| 强制捆绑调教一区二区| 激情偷乱视频一区二区三区| 国产精品99精品久久免费| 成人精品亚洲人成在线| 一本一道久久a久久精品综合蜜臀| 91久久精品午夜一区二区| 欧美日本一区二区三区| 精品国产伦理网| 亚洲女同ⅹxx女同tv| 婷婷久久综合九色国产成人| 蜜臀av性久久久久蜜臀aⅴ流畅 | 日本亚洲欧美天堂免费| 国产精品一区二区久久不卡 | 欧美精品在线观看一区二区| 欧美sm美女调教| 亚洲欧洲无码一区二区三区| 图片区小说区国产精品视频| 国产在线播精品第三| 91豆麻精品91久久久久久| 555www色欧美视频| 国产精品久久久久一区| 蜜臀av亚洲一区中文字幕| 从欧美一区二区三区| 欧美肥胖老妇做爰| 国产精品国产三级国产普通话蜜臀 | 亚洲一区二区在线视频| 国模套图日韩精品一区二区| 色婷婷激情一区二区三区| xvideos.蜜桃一区二区|