亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? kda.r

?? r軟件 另一款可以計算核估計的軟件包 需安裝r軟件
?? R
?? 第 1 頁 / 共 2 頁
字號:
############################################################################### Kernel discriminant analysis############################################################################################################################################################### Find bandwidths for each class in training set, for 2- to 6-dim ## Parameters# x - data values# group - group variable# bw - type of bandwidth selector# nstage, pilot, pre - parameters for plugin bandwidths# diag - FALSE - use full b/w matrices#      - TRUE - use diag b/w matrices## Returns# Matrix of bandwidths for each group in training set###############################################################################hkda <- function(x, x.group, bw="plugin", nstage=2, binned=TRUE, bgridsize){  grlab <- sort(unique(x.group))  m <- length(grlab)  bw <- substr(tolower(bw),1,1)  hs <- numeric(0)  if (missing(bgridsize)) bgridsize <- 401    for (i in 1:m)  {    y <- x[x.group==grlab[i]]    if (bw=="p")      h <- hpi(y, nstage=nstage, binned=TRUE, bgridsize=bgridsize)     hs <- c(hs, h)  }  return(hs)}   Hkda <- function(x, x.group, Hstart, bw="plugin", nstage=2, pilot="samse",                 pre="sphere", binned=FALSE, bgridsize){  d <- ncol(x)  grlab <- sort(unique(x.group))  m <- length(grlab)  bw <- substr(tolower(bw),1,1)  Hs <- numeric(0)  if (missing(bgridsize) & binned) bgridsize <- default.gridsize(d)    for (i in 1:m)  {    y <- x[x.group==grlab[i],]    if (!missing(Hstart))     {      Hstarty <- Hstart[((i-1)*d+1) : (i*d),]      if (bw=="l")                H <- Hlscv(y, Hstart=Hstarty)      else if (bw=="s")        H <- Hscv(y, pre=pre, Hstart=Hstarty, binned=binned, bgridsize=bgridsize)      else if (bw=="p")        H <- Hpi(y, nstage=nstage, pilot=pilot, pre=pre, Hstart=Hstarty,                 binned=binned, bgridsize=bgridsize)     }    else    {      if (bw=="l")        H <- Hlscv(y)      else if (bw=="s")        H <- Hscv(y, pre=pre, binned=binned, bgridsize=bgridsize)      else if (bw=="p")        H <- Hpi(y, nstage=nstage, pilot=pilot, pre=pre, binned=binned, bgridsize=bgridsize)    }    Hs <- rbind(Hs, H)  }  return(Hs)   }Hkda.diag <- function(x, x.group, bw="plugin", nstage=2, pilot="samse",                 pre="sphere", binned=FALSE, bgridsize){  d <- ncol(x)  grlab <- sort(unique(x.group))  m <- length(grlab)  bw <- substr(tolower(bw),1,1)  Hs <- numeric(0)  if (missing(bgridsize) & binned) bgridsize <- default.gridsize(d)  for (i in 1:m)  {    y <- x[x.group==grlab[i],]    if (bw=="l")      H <- Hlscv.diag(y, binned=binned, bgridsize=bgridsize)    else if (bw=="p")       H <- Hpi.diag(y, nstage=nstage, pilot=pilot, pre=pre, binned=binned, bgridsize=bgridsize)    else if (bw=="s")      H <- Hscv.diag(y, pre=pre, binned=binned, bgridsize=bgridsize)    Hs <- rbind(Hs, H)  }  return(Hs)   }################################################################################ Classify data set according to discriminant analysis based on training data# for 1- to 6-dim## Parameter# x - training data# x.group - group variable for x# y - data values to be classified# Hs - bandwidth matrices# prior.prob - prior probabilities## Returns# Group classification of data set y###############################################################################kda <- function(x, x.group, Hs, hs, y, prior.prob=NULL){  if (is.vector(x))  {    disc.gr <- kda.1d(x=x, x.group=x.group, hs=hs, y=y, prior.prob=prior.prob)  }  else  {      if (is.data.frame(x)) x <- as.matrix(x)    if (is.data.frame(y)) y <- as.matrix(y)    gr <- sort(unique(x.group))    ##d <- ncol(x)       ## if prior.prob is NULL then use sample proportions    if (is.null(prior.prob))    {      prior.prob <- rep(0, length(gr))      for (j in 1:length(gr))        prior.prob[j] <- length(which(x.group==gr[j]))      prior.prob <- prior.prob/nrow(x)    }        if (!(identical(all.equal(sum(prior.prob), 1), TRUE)))        stop("Sum of prior weights not equal to 1")        ## Compute KDE and weighted KDE     m <- length(gr)    fhat <- kda.kde(x, x.group, Hs=Hs, eval.points=y)    fhat.wt <- matrix(0, ncol=m, nrow=nrow(y))          for (j in 1:m)      fhat.wt[,j] <- fhat$est[[j]]* prior.prob[j]        ## Assign y according largest weighted density value     disc.gr.temp <- apply(fhat.wt, 1, which.max)        disc.gr <- gr    for (j in 1:m)    {      ind <- which(disc.gr.temp==j)      disc.gr[ind] <- gr[j]    }  }    return(disc.gr) }kda.1d <- function(x, x.group, hs, y, prior.prob=NULL){   gr <- sort(unique(x.group))  # if prior.prob is NULL then use sample proportions  if (is.null(prior.prob))  {    prior.prob <- rep(0, length(gr))    for (j in 1:length(gr))      prior.prob[j] <- length(which(x.group==gr[j]))    prior.prob <- prior.prob/length(x)  }    if (!(identical(all.equal(sum(prior.prob), 1), TRUE)))      stop("Sum of prior weights not equal to 1")  ## Compute KDE and weighted KDE   m <- length(gr)  fhat <- kda.kde(x, x.group, hs=hs, eval.points=y)  fhat.wt <- matrix(0, ncol=m, nrow=length(y))      for (j in 1:m)    fhat.wt[,j] <- fhat$estimate[[j]]* prior.prob[j]  ## Assign y according largest weighted density value   disc.gr.temp <- apply(fhat.wt, 1, which.max)  disc.gr <- gr  for (j in 1:m)  {    ind <- which(disc.gr.temp==j)    disc.gr[ind] <- gr[j]  }   return(disc.gr) }################################################################################ Compares true group classification with an estimated one## Parameters# group - true group variable# est.group - estimated group variable## Returns# List with components# comp - cross-classification table of groupings - true groups are the rows,#        estimated groups are the columns# error - total mis-classification rate###############################################################################compare <- function(x.group, est.group, by.group=FALSE){  if (length(x.group)!=length(est.group))    stop("Group label vectors not the same length")    grlab <- sort(unique(x.group))  m <- length(grlab)  comp <- matrix(0, nr=m, nc=m)    for (i in 1:m)    for (j in 1:m)      comp[i,j] <- sum((x.group==grlab[i]) & (est.group==grlab[j]))    if (by.group)  {    er <- vector()    for (i in 1:m)      er[i] <- 1-comp[i,i]/rowSums(comp)[i]    er <- matrix(er, nc=1)    er <- rbind(er, 1 - sum(diag(comp))/sum(comp))     rownames(er) <- c(as.character(paste(grlab, "(true)")), "Total")    colnames(er) <- "error"      }  else     er <- 1 - sum(diag(comp))/sum(comp)    comp <- cbind(comp, rowSums(comp))  comp <- rbind(comp, colSums(comp))  colnames(comp) <- c(as.character(paste(grlab, "(est.)")), "Total")  rownames(comp) <- c(as.character(paste(grlab, "(true)")), "Total")  return(list(cross=comp, error=er)) }################################################################################ Computes cross-validated misclassification rates (for use when test data is# not independent of training data) for KDA## Parameters# x - training data# x.group - group variable for x# y - data values to be classified# Hs - bandwidth matrices# prior.prob - prior probabilities## Returns# List with components# comp - cross-classification table of groupings - true groups are the rows,#        estimated groups are the columns# error - total mis-classification rate###############################################################################compare.kda.cv <- function(x, x.group, bw="plugin",    prior.prob=NULL, Hstart, by.group=FALSE, trace=FALSE, binned=FALSE,    bgridsize, recompute=FALSE, ...){  ## 1-d  if (is.vector(x))  {    n <- length(x)    h <- hkda(x, x.group, bw=bw, binned=binned, bgridsize=bgridsize, ...)    gr <- sort(unique(x.group))     kda.cv.gr <- x.group    for (i in 1:n)    {      h.mod <- h      ## find group that x[i] belongs to       ind <- which(x.group[i]==gr)      indx <- x.group==gr[ind]      indx[i] <- FALSE      if (substr(bw,1,1)=="p")        h.temp <- hpi(x[indx], binned=binned, bgridsize=bgridsize, ...)      h.mod[ind] <- h.temp          ## recompute KDA estimate of groups with x[i] excluded            if (trace)        cat(paste("Processing data item:", i, "\n"))            kda.cv.gr[i] <- kda(x[-i], x.group[-i], hs=h.mod, y=x, prior.prob=prior.prob)[i]    }    return(compare(x.group, kda.cv.gr, by.group=by.group))   }  ## multi-dimensional     n <- nrow(x)  d <- ncol(x)    if (!missing(Hstart))    H <- Hkda(x, x.group, bw=bw, Hstart=Hstart, binned=binned, bgridsize=bgridsize, ...)  else    H <- Hkda(x, x.group, bw=bw, binned=binned, bgridsize=bgridsize, ...)  ### classify data x using KDA rules based on x itself  ##kda.group <- kda(x, x.group, Hs=H, y=x, prior.prob=prior.prob)  ##comp <- compare(x.group, kda.group)   gr <- sort(unique(x.group))   kda.cv.gr <- x.group    for (i in 1:n)  {    H.mod <- H    ### find group that x[i] belongs to     ind <- which(x.group[i]==gr)    indx <- x.group==gr[ind]    indx[i] <- FALSE    if (recompute)    {      ## compute b/w matrix for that group with x[i] excluded      if (!missing(Hstart))      {          Hstart.temp <- Hstart[((ind-1)*d+1):(ind*d),]                if (substr(bw,1,1)=="p")          H.temp <- Hpi(x[indx,], Hstart=Hstart.temp, binned=binned, bgridsize=bgridsize,...)        else if (substr(bw,1,1)=="s")          H.temp <- Hscv(x[indx,],  Hstart=Hstart.temp, binned=binned, bgridsize=bgridsize,...)        else if (substr(bw,1,1)=="l")           H.temp <- Hlscv(x[indx,],  Hstart=Hstart.temp, ...)      }      else      {        if (substr(bw,1,1)=="p")          H.temp <- Hpi(x[indx,], binned=binned, bgridsize=bgridsize, ...)        else if (substr(bw,1,1)=="s")          H.temp <- Hscv(x[indx,], binned=binned, bgridsize=bgridsize, ...)        else if (substr(bw,1,1)=="l")          H.temp <- Hlscv(x[indx,], ...)       }            H.mod[((ind-1)*d+1):(ind*d),] <- H.temp    }    ## recompute KDA estimate of groups with x[i] excluded          if (trace)      cat(paste("Processing data item:", i, "\n"))    kda.cv.gr[i] <- kda(x[-i,], x.group[-i], Hs=H.mod, y=x, prior.prob=prior.prob)[i]  }    return(compare(x.group, kda.cv.gr, by.group=by.group)) }################################################################################## Same as compare.kda.cv except uses diagonal b/w matrices###############################################################################compare.kda.diag.cv <- function(x, x.group, bw="plugin", prior.prob=NULL,   by.group=FALSE, trace=FALSE, binned=FALSE, bgridsize, recompute=FALSE, ...){  n <- nrow(x)  d <- ncol(x)  H <- Hkda.diag(x, x.group, bw=bw, binned=binned, bgridsize=bgridsize, ...)  ##kda.group <- kda(x, x.group, Hs=H, y=x, prior.prob=prior.prob)  ##comp <- compare(x.group, kda.group)   gr <- sort(unique(x.group))   kda.cv.gr <- x.group    for (i in 1:n)  {    H.mod <- H    if (recompute)    {      ind <- which(x.group[i]==gr)      indx <- x.group==gr[ind]      indx[i] <- FALSE      if (substr(bw,1,1)=="p")        H.temp <- Hpi.diag(x[indx,],  binned=binned, bgridsize=bgridsize, ...)      else if (substr(bw,1,1)=="l")        H.temp <- Hlscv.diag(x[indx,], binned=binned, bgridsize=bgridsize, ...)            H.mod[((ind-1)*d+1):(ind*d),] <- H.temp    }        if (trace)      cat(paste("Processing data item:", i, "\n"))    kda.cv.gr[i] <- kda(x[-i,], x.group[-i], Hs=H.mod, y=x, prior.prob=prior.prob)[i]    }    return(compare(x.group, kda.cv.gr, by.group=by.group)) }################################################################################ KDEs of individual densities for KDA - 1- to 3-dim## Parameters# x - data values# group - group variable# Hs - bandwidth matrices## Returns# List with components (class dade)# x - list of data values# eval.points - evaluation points of dnesity estimate# estimate - list of density estimate# H - list of bandwidth matrices##############################################################################kda.kde <- function(x, x.group, Hs, hs, prior.prob=NULL, gridsize, xmin, xmax, supp=3.7, eval.points=NULL, binned=FALSE, bgridsize){  if (is.vector(x))  {    if (missing(gridsize))  gridsize <- 101    if (missing(bgridsize)) bgridsize <- 401    fhat.list <- kda.kde.1d(x=x, x.group=x.group, hs=hs, prior.prob=prior.prob, gridsize=gridsize, eval.points=eval.points, supp=supp, binned=binned, bgridsize=bgridsize, xmin=xmin, xmax=xmax)  }  else  {    if (is.data.frame(x)) x <- as.matrix(x)    grlab <- sort(unique(x.group))    m <- length(grlab)    d <- ncol(x)    ## find largest bandwidth matrix to initialise grid    detH <- vector()     for (j in 1:m)      detH[j] <- det(Hs[((j-1)*d+1) : (j*d),])      Hmax.ind <- which.max(detH)    Hmax <- Hs[((Hmax.ind-1)*d+1) : (Hmax.ind*d),]

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
天天色综合天天| 国产精品丝袜久久久久久app| 成人免费看视频| 精品一区二区三区在线观看 | 欧美精品1区2区3区| 欧美色区777第一页| 欧美日韩在线综合| 欧美日韩国产大片| 欧美一级在线观看| 精品国产乱码久久久久久夜甘婷婷| 51精品视频一区二区三区| 制服丝袜av成人在线看| 精品女同一区二区| 中文字幕精品一区二区精品绿巨人 | 在线亚洲精品福利网址导航| 色综合久久久久综合| 欧美日韩美少妇| 日韩一区二区三区电影在线观看| 精品三级在线看| 国产午夜亚洲精品午夜鲁丝片| 日本一二三四高清不卡| 亚洲狼人国产精品| 欧美aaaaaa午夜精品| 福利电影一区二区| 欧美在线不卡一区| 日韩欧美一二三| 国产精品入口麻豆原神| 亚洲五月六月丁香激情| 精品一区二区在线免费观看| 99久久免费视频.com| 欧美另类一区二区三区| 国产三级三级三级精品8ⅰ区| 国产精品欧美精品| 亚洲综合一区二区精品导航| 日韩av不卡一区二区| eeuss鲁片一区二区三区在线看| 欧美亚洲国产bt| 久久久蜜臀国产一区二区| 一区二区三区日韩精品视频| 黄网站免费久久| 99re成人精品视频| 日韩精品一区国产麻豆| 一区二区三区美女| 国产成人免费视频网站 | 91网站黄www| 欧美mv日韩mv国产网站| 尤物av一区二区| 国产另类ts人妖一区二区| 欧美亚洲高清一区二区三区不卡| 久久影院午夜片一区| 丝袜亚洲精品中文字幕一区| 高清不卡在线观看| 日韩欧美一级在线播放| 亚洲综合偷拍欧美一区色| 国产美女一区二区三区| 欧美一区二区三区在线观看| 一区二区三区在线影院| 国产精品99久久久久久似苏梦涵| 欧美美女激情18p| 亚洲激情在线播放| 99热在这里有精品免费| 久久久久久久久久久99999| 免费在线看一区| 91精品国产aⅴ一区二区| 亚洲成人精品一区二区| 色综合中文字幕国产 | 欧美刺激午夜性久久久久久久| 亚洲卡通动漫在线| 99久久免费国产| 中文字幕一区在线观看| 从欧美一区二区三区| 国产亚洲欧美一区在线观看| 国内久久精品视频| 精品国产电影一区二区| 捆绑调教一区二区三区| 欧美r级电影在线观看| 奇米亚洲午夜久久精品| 日韩三级电影网址| 卡一卡二国产精品| 久久久三级国产网站| 国产乱淫av一区二区三区| 久久综合色鬼综合色| 国产成人8x视频一区二区 | 在线观看亚洲成人| 亚洲一二三四区| 欧美日韩卡一卡二| 日产国产欧美视频一区精品| 欧美一级淫片007| 国产一区二区三区免费观看| 久久先锋影音av| 99久久久精品免费观看国产蜜| 日韩一区中文字幕| 欧美日韩国产在线播放网站| 日韩国产成人精品| 国产天堂亚洲国产碰碰| 91麻豆精品在线观看| 午夜精品影院在线观看| 精品国产一区二区亚洲人成毛片| 精品一区二区三区欧美| 久久精品免视看| 欧美亚洲动漫制服丝袜| 免费在线欧美视频| 国产天堂亚洲国产碰碰| 欧美亚洲精品一区| 国产在线精品一区二区不卡了| 国产精品网站一区| 欧美日韩一区二区电影| 国产一区二三区| 亚洲一区免费观看| 国产欧美日本一区视频| 欧美三级韩国三级日本三斤| 国产曰批免费观看久久久| 一区二区三区四区av| 精品剧情v国产在线观看在线| 99免费精品在线观看| 免费观看91视频大全| 亚洲乱码国产乱码精品精98午夜 | 99综合影院在线| 日韩不卡手机在线v区| 亚洲人成网站影音先锋播放| 日韩欧美一级精品久久| 在线视频亚洲一区| 国产91色综合久久免费分享| 三级影片在线观看欧美日韩一区二区 | 精品美女一区二区三区| 91精彩视频在线| 国产成人亚洲综合a∨婷婷| 亚洲最大成人网4388xx| 日本一区二区三级电影在线观看| 欧美日韩夫妻久久| 日本韩国精品在线| 粉嫩一区二区三区性色av| 久久99国产精品成人| 亚洲无人区一区| 国产精品水嫩水嫩| 日韩欧美在线一区二区三区| 91九色02白丝porn| 色婷婷综合久色| 国产在线视频一区二区三区| 午夜电影久久久| 亚洲激情综合网| 国产女人水真多18毛片18精品视频 | 欧美日韩日本视频| 色哟哟国产精品| 国产不卡高清在线观看视频| 国产尤物一区二区| 久久精品国产一区二区三区免费看| 亚洲成人黄色影院| 一个色综合网站| 一区二区三区国产精华| 亚洲日本成人在线观看| 亚洲日本在线看| 一二三四社区欧美黄| 亚洲自拍偷拍图区| 亚洲亚洲人成综合网络| 午夜精品一区二区三区电影天堂| 亚洲在线观看免费视频| 一卡二卡三卡日韩欧美| 亚洲aⅴ怡春院| 亚洲福中文字幕伊人影院| 亚洲va国产天堂va久久en| 日韩中文字幕不卡| 美女爽到高潮91| 欧美a级一区二区| 国产精品综合一区二区三区| 国产成人精品1024| 丁香桃色午夜亚洲一区二区三区| 国产99久久久国产精品| 成人不卡免费av| 99精品视频一区| 欧美精品久久久久久久久老牛影院 | 国产成人精品综合在线观看| 久久99国产精品久久| 丁香啪啪综合成人亚洲小说| av爱爱亚洲一区| 欧美男男青年gay1069videost| 欧美日韩五月天| 欧美刺激午夜性久久久久久久| 26uuu亚洲| 久久亚洲精品小早川怜子| 18成人在线观看| 日韩不卡一区二区| 成人久久18免费网站麻豆| 色老综合老女人久久久| 日韩色在线观看| 国产精品久久久久久亚洲伦| 亚洲18影院在线观看| 国产一区福利在线| 欧美亚日韩国产aⅴ精品中极品| 日韩欧美在线观看一区二区三区| 亚洲国产精品99久久久久久久久| 亚洲一区二区三区四区的| 裸体健美xxxx欧美裸体表演| 99视频热这里只有精品免费| 欧美一级片在线观看| √…a在线天堂一区| 亚洲高清免费观看高清完整版在线观看| 理论片日本一区| 色诱亚洲精品久久久久久| 久久久蜜桃精品|