?? pre.scale.rd
字號:
\name{pre.scale, pre.sphere}\alias{pre.sphere}\alias{pre.scale}\title{Pre-sphering and pre-scaling}\description{Pre-sphered or pre-scaled version of data.}\usage{pre.sphere(x, mean.centred=FALSE)pre.scale(x, mean.centred=FALSE)}\arguments{ \item{x}{matrix of data values} \item{mean.centred}{if TRUE then centre the data values to have zero mean}}\value{Pre-sphered or pre-scaled version of data. These pre-transformations are required for implementing the plug-in \code{\link{Hpi}} selectors and the smoothed cross validation \code{\link{Hscv}} selectors. }\details{ For pre-scaling, the data values are pre-multiplied by \eqn{\mathbf{S}^{-1/2}}{S^(-1/2)} and for pre-scaling, by \eqn{(\mathbf{S}_D)^{-1/2}}{S_D^(-1/2)} where \eqn{\mathbf{S}}{S} is the sample variance and \eqn{\mathbf{S}_D}{S_D} is \eqn{\mathrm{diag} \, (S_1^2, S_2^2, \dots, S_d^2)}{diag (S_1^2, S_2^2, ..., S_d^2)} where \eqn{S_i^2}{S_i^2} is the i-th marginal sample variance. If \eqn{\mathbf{H}^*}{H*} is the bandwidth matrix for the pre-transformed data and \eqn{\mathbf{H}}{H} is the bandwidth matrix for the original data, then \eqn{\mathbf{H}=\mathbf{S}^{1/2} \mathbf{H}^* \mathbf{S}^{1/2}}{S^(1/2) H* S^(1/2)} or \eqn{\mathbf{H} = \mathbf{S}_D^{1/2} \mathbf{H}^*\mathbf{S}_D^{1/2}}{S_D^(1/2) H* S_D^(1/2)} as appropriate. }%%\references{ Wand, M.P. \& Jones, M.C. (1994) Multivariate plugin bandwidth%% selection. \emph{Computational Statistics}, \bold{9}, 97-116.%% %% Duong, T. \& Hazelton, M.L. (2003) Plug-in bandwidth matrices for%% bivariate kernel density estimation. \emph{Journal of Nonparametric%% Statistics}, \bold{15}, 17-30.%%}\examples{data(unicef)unicef <- as.matrix(unicef)unicef.sp <- pre.sphere(unicef)unicef.sc <- pre.scale(unicef, mean.centred=TRUE)var(unicef.sp)var(unicef.sc)}\keyword{ algebra }
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -