?? dkde.rd
字號:
\name{dkde, pkde, qkde, rkde}\alias{dkde}\alias{pkde}\alias{qkde} \alias{rkde} \title{Functions for 1-dimensional kernel density estimates} \description{ Functions for 1-dimensional kernel density estimates. } \usage{ pkde(q, fhat) qkde(p, fhat) dkde(x, fhat) rkde(n, fhat, positive=FALSE) } \arguments{ \item{x,q}{vector of quantiles} \item{p}{vector of probabilities} \item{n}{number of observations} \item{positive}{flag to compute KDE on the positive real line. Default is FALSE.} \item{fhat}{kernel density estimate, object of class \code{"kde"}} } \value{ For the kernel density estimate \code{fhat}, \code{pkde} computes the cumulative probability for the quantile \code{q}, \code{qkde} computes the quantile corresponding to the probability \code{p}, \code{dkde} computes the density value at \code{x} and \code{rkde} computes a random sample of size \code{n}. }\details{ \code{pkde} uses the Simpson's rule is used for the numerical integration. %So shares the limitations of this numerical method. %\code{dkde} is a %shortcut for \code{kde(x=fhat$x, h=fhat$h, %eval.points=fhat$x)$estimate}. \code{rkde} uses Silverman (1986)'s method to generate a random sample from a KDE.}\references{ Silverman, B. (1986) \emph{Density Estimation for Statistics and Data Analysis}. Chapman \& Hall/CRC. London.}\examples{x <- rnorm.mixt(n=10000, mus=0, sigmas=1, props=1)fhat <- kde(x=x, h=hpi(x))p1 <- pkde(fhat=fhat, q=c(-1, 0, 0.5))qkde(fhat=fhat, p=p1) ## should be close to c(-1, 0, 0.5)x1 <- rkde(fhat, n=100)plot(fhat)fhat1 <- kde(x=x1, h=hpi(x1))plot(fhat1, add=TRUE, col=2)fhat2 <- dkde(x=x1, fhat=fhat1)points(x1, fhat2, col=3)}\keyword{ smooth}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -