?? hlscv.rd
字號:
\name{Hlscv, Hlscv.diag, hlscv}\alias{Hlscv}\alias{Hlscv.diag}%\alias{hlscv}\title{Least-squares cross-validation (LSCV) bandwidth matrix selector for multivariate data}\description{LSCV bandwidth for 1- to 6-dimensional data}\usage{Hlscv(x, Hstart)Hlscv.diag(x, Hstart, binned=FALSE, bgridsize)}%hlscv(x, binned=TRUE, bgridsize)\arguments{ \item{x}{vector or matrix of data values} \item{Hstart}{initial bandwidth matrix, used in numerical optimisation} \item{binned}{flag for binned kernel estimation} \item{bgridsize}{vector of binning grid sizes - required only if \code{binned=TRUE}}}\value{LSCV bandwidth.}\references{ Bowman, A. (1984) An alternative method of cross-validation for the smoothing of kernel density estimates. \emph{Biometrika}. \bold{71}, 353-360. Duong, T. \& Hazelton, M.L. (2005) Cross-validation bandwidth matrices for multivariate kernel density estimation. \emph{Scandinavian Journal of Statistics}. \bold{32}, 485-506. Rudemo, M. (1982) Empirical choice of histograms and kernel density estimators. \emph{Scandinavian Journal of Statistics}. \bold{9}, 65-78. Sain, S.R, Baggerly, K.A \& Scott, D.W. (1994) Cross-validation of multivariate densities. \emph{Journal of the American Statistical Association}. \bold{82}, 1131-1146. }\details{\code{hlscv} is the univariate SCV selector of Bowman (1984) and Rudemo (1982). \code{Hlscv} is a multivariate generalisation of this. Use \code{Hlscv} for full bandwidth matrices and \code{Hlscv.diag} for diagonal bandwidth matrices. %For d = 1, the selector \code{hlscv} is always computed as binned %estimator. For d = 2, 3, 4 and \code{binned=TRUE}, estimates are computed over a binning grid defined by \code{bgridsize}. Otherwise it's computed exactly. If \code{Hstart} is not given then it defaults to \code{k*var(x)} where k = \eqn{\left[\frac{4}{n(d+2)}\right]^{2/(d+4)}}{4/(n*(d + 2))^(2/(d+ 4))}, n = sample size, d = dimension of data. }\seealso{ \code{\link{Hbcv}}, \code{\link{Hscv}}}\examples{mus <- rbind(c(-1/2,0), c(1/2,0))Sigmas <- rbind(diag(c(1/16, 1)), rbind(c(1/8, 1/16), c(1/16, 1/8)))props <- c(2/3, 1/3)x <- rmvnorm.mixt(1000, mus, Sigmas, props)Hlscv(x)Hlscv.diag(x, binned=TRUE)}\keyword{ smooth }
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -