?? kda.rd
字號:
\name{kda, Hkda, Hkda.diag, hkda}\alias{Hkda}\alias{Hkda.diag}\alias{kda}\alias{hkda}\title{Kernel discriminant analysis for multivariate data}\description{ Kernel discriminant analysis for 1- to 6-dimensional data.}\usage{Hkda(x, x.group, Hstart, bw="plugin", nstage=2, pilot="samse", pre="sphere", binned=FALSE, bgridsize)Hkda.diag(x, x.group, bw="plugin", nstage=2, pilot="samse", pre="sphere", binned=FALSE, bgridsize)hkda(x, x.group, bw="plugin", nstage=2, binned=TRUE, bgridsize)kda(x, x.group, Hs, hs, y, prior.prob=NULL)}\arguments{ \item{x}{matrix of training data values} \item{x.group}{vector of group labels for training data} \item{y}{matrix of test data} \item{Hs}{(stacked) matrix of bandwidth matrices} \item{hs}{vector of scalar bandwidths} \item{prior.prob}{vector of prior probabilities} \item{bw}{bandwidth: \code{"plugin"} = plug-in, \code{"lscv"} = LSCV, \code{"scv"} = SCV} \item{nstage}{number of stages in the plug-in bandwidth selector (1 or 2)} \item{pilot}{\code{"amse"} = AMSE pilot bandwidths, \code{"samse"} = single SAMSE pilot bandwidth} \item{pre}{\code{"scale"} = pre-scaling, \code{"sphere"} = pre-sphering} \item{Hstart}{(stacked) matrix of initial bandwidth matrices, used in numerical optimisation} \item{binned}{flag for binned kernel estimation} \item{bgridsize}{vector of binning grid sizes - required only if \code{binned=TRUE}}}\value{ -- The result from \code{Hkda} and \code{Hkda.diag} is a stacked matrix of bandwidth matrices, one for each training data group. The result from \code{hkda} is a vector of bandwidths, one for each training data group. -- The result from \code{kda} is a vector of group labels estimated via the kernel discriminant rule. If the test data \code{y} are given then these are classified. Otherwise the training data \code{x} are classified.}\references{ Mardia, K.V., Kent, J.T. \& Bibby J.M. (1979) \emph{Multivariate Analysis}. Academic Press. London. Silverman, B. W. (1986) \emph{Data Analysis for Statistics and Data Analysis}. Chapman \& Hall. London. Simonoff, J. S. (1996) \emph{Smoothing Methods in Statistics}. Springer-Verlag. New York Venables, W.N. & Ripley, B.D. (1997) \emph{Modern Applied Statistics with S-PLUS}. Springer-Verlag. New York. }\details{ -- The values that valid for \code{bw} are \code{"plugin", "lscv"} and \code{"scv"} for \code{Hkda}. These in turn call \code{\link{Hpi}}, \code{\link{Hlscv}} and \code{\link{Hscv}}. For plugin selectors, all of \code{nstage}, \code{pilot} and \code{pre} need to be set. For SCV selectors, currently \code{nstage=1} always but \code{pilot} and \code{pre} need to be set. For LSCV selectors, none of them are required. \code{Hkda.diag} makes analagous calls to diagonal selectors. For d = 1, 2, 3, 4, and if \code{eval.points} is not specified, then the density estimate is computed over a grid defined by \code{gridsize} (if \code{binned=FALSE}) or by \code{bgridsize} (if \code{binned=TRUE}). For d = 1, 2, 3, 4, and if \code{eval.points} is specified, then the density estimate is computed exactly at \code{eval.points}. For d > 4, the kernel density estimate is computed exactly and \code{eval.points} must be specified. For details on the pre-transformations in \code{pre}, see \code{\link{pre.sphere}} and \code{\link{pre.scale}}. -- If you have prior probabilities then set \code{prior.prob} to these. Otherwise \code{prior.prob=NULL} is the default i.e. use the sample proportions as estimates of the prior probabilities.}\seealso{ \code{\link{compare}}, \code{\link{compare.kda.cv}}, \code{\link{kda.kde}}}\examples{ ### See examples in ? plot.kda.kde } \keyword{ smooth }
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -